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Abstract

We develop a family of reformulations of an arbitrary consistent linear system into a stochastic
problem. The reformulations are governed by two user-defined parameters: a positive definite matrix
defining a norm, and an arbitrary discrete or continuous distribution over random matrices. Our re-
formulation has several equivalent interpretations, allowing for researchers from various communities
to leverage their domain specific insights. In particular, our reformulation can be equivalently seen
as a stochastic optimization problem, stochastic linear system, stochastic fixed point problem and
a probabilistic intersection problem. We prove sufficient, and necessary and sufficient conditions for
the reformulation to be exact.

Further, we propose and analyze three stochastic algorithms for solving the reformulated problem—
basic, parallel and accelerated methods—with global linear convergence rates. The rates can be
interpreted as condition numbers of a matrix which depends on the system matrix and on the refor-
mulation parameters. This gives rise to a new phenomenon which we call stochastic preconditioning,
and which refers to the problem of finding parameters (matrix and distribution) leading to a suf-
ficiently small condition number. Our basic method can be equivalently interpreted as stochastic
gradient descent, stochastic Newton method, stochastic proximal point method, stochastic fixed
point method, and stochastic projection method, with fixed stepsize (relaxation parameter), applied
to the reformulations.
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1 Introduction

Linear systems form the backbone of most numerical codes used in academia and industry. With the
advent of the age of big data, practitioners are looking for ways to solve linear systems of unprecedented
sizes. The present work is motivated by the need to design such algorithms. As an algorithmic tool
enabling faster computation, randomization is well developed, understood and appreciated in several
fields, typically traditionally of a “discrete” nature, most notably theoretical computer science [28].
However, probabilistic ideas are also increasingly and successfully penetrating “continuous” fields, such
as numerical linear algebra [57, 10, 11, 60, 27, 50, 1], optimization [24, 33, 35, 46, 59, 40], control
theory [4, 5, 62], machine learning [52, 47, 21, 14, 44], and signal processing [7, 22].

In this work we are concerned with the problem of solving a consistent linear system. In particular,
consider the problem

solve Ax = b, (1)

where 0 6= A ∈ Rm×n. We shall assume throughout the paper that the system is consistent, i.e.,

L def
= {x : Ax = b} 6= ∅. Problem (1) is arguably one of the most important problems in linear algebra.

As such, a tremendous amount of research has been done to design efficient iterative algorithms [51].
However, surprisingly little is know about randomized iterative algorithms for solving linear systems. In
this work we aim to contribute to closing this gap.

1.1 Stochastic reformulations of linear systems

We propose a fundamental and flexible way of reformulating each consistent linear system into a stochas-
tic problem. To the best of our knowledge, this is the first systematic study of such reformulations.
Stochasticity is introduced in a controlled way, into an otherwise deterministic problem, as a decompo-
sition tool which can be leveraged to design efficient, granular and scalable randomized algorithms.

Parameters defining the reformulation. Stochasticity enters our reformulations through a user-
defined distribution D describing an ensemble of random matrices S ∈ Rm×q. We make use of one
more parameter: a user-defined n×n symmetric positive definite matrix B. Our approach and underlying
theory support virtually all thinkable distributions. The choice of the distribution should ideally depend
on the problem itself, as it will affect the conditioning of the reformulation. However, for now we leave
such considerations aside.

One stochastic reformulation in four disguises. Our reformulation of (1) as a stochastic problem
has several seemingly different, yet equivalent interpretations, and hence we describe them here side by
side.

1. Stochastic optimization problem. Consider the problem

minimize f(x)
def
= ES∼D [fS(x)] , (2)

where fS(x) = 1
2(Ax − b)>H(Ax − b), H = S(S>AB−1A>S)†S>, and † denotes the Moore-

Penrose pseudoinverse. When solving the problem, we do not have (or do not wish to exercise,
as it may be prohibitively expensive) explicit access to f , its gradient or Hessian. Rather, we can
repeatedly sample S ∼ D and receive unbiased samples of these quantities at points of interest.
That is, we may obtain local information about the stochastic function fS, such as the stochastic
gradient ∇fS(x), and use this to drive an iterative process for solving (2).
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2. Stochastic linear system. Consider now a preconditioned version of the linear system (1) given by

solve B−1A>ES∼D [H]Ax = B−1A>ES∼D [H] b, (3)

where P = B−1A>ES∼D [H] is the preconditioner. The preconditioner is not assumed to be
known explicitly. Instead, when solving the problem, we are able to repeatedly sample S ∼ D,
obtaining an unbiased estimate of the preconditioner (not necessarily explicitly), B−1A>H, for
which we coin the name stochastic preconditioner. This gives us access to an unbiased sample of
the preconditioned system (3): B−1A>HAx = B−1A>Hb. As we shall see—in an analogy with
stochastic optimization—the information contained in such systems can be utilized by an iterative
algorithm to solve (3).

3. Stochastic fixed point problem. Let ΠB
LS(x) denote the projection of x onto LS

def
= {x : S>Ax =

S>b}, in the norm ‖x‖B
def
=
√
x>Bx. Consider the stochastic fixed point problem

solve x = ES∼D
[
ΠB
LS(x)

]
. (4)

That is, we seek to find a fixed point of the mapping x → ES∼D

[
ΠB
LS(x)

]
. When solving the

problem, we do not have an explicit access to the average projection map. Instead, we are able
to repeatedly sample S ∼ D, and use the stochastic projection map x→ ΠB

LS(x).

4. Probabilistic intersection problem. Note that L ⊆ LS for all S. We would wish to design D in
such a way that a suitably chosen notion of an intersection of the sets LS is equal to L. The
correct notion is what we call probabilistic intersection, denoted ∩S∼DLS, and defined as the set
of points x which belong to LS with probability one. This leads to the problem:

find x ∈ ∩S∼DLS
def
= {x : Prob(x ∈ LS) = 1}. (5)

As before, we typically do not have an explicit access to the probabilistic intersection when de-
signing an algorithm. Instead, we can repeatedly sample S ∼ D, and utilize the knowledge of LS
to drive the iterative process. If D is a discrete distribution, probabilistic intersection reduces to
standard intersection.

All of the above formulations have a common feature: they all involve an expectation over S ∼ D,
and we either do not assume this expectation is known explicitly, or even if it is, we prefer, due to
efficiency or other considerations, to sample from unbiased estimates of the objects (e.g., stochastic
gradient ∇fS, stochastic preconditioner B−1A>H, stochastic projection map x→ ΠB

LS(x), random set
LS) appearing in the formulation.

Equivalence and exactness. We show that all these stochastic reformulations are equivalent (see
Theorem 3.4). In particular, the following sets are identical: the set of minimizers of the stochastic
optimization problem (2), the solution set of the stochastic linear system (3), the set of fixed points of
the stochastic fixed point problem (4), and the probabilistic intersection (5). Further, we give necessary
and sufficient conditions for this set to be equal to L. If this is the case, we say the the reformulation
is exact (see Section 3.4). Distributions D satisfying these conditions always exist, independently of
any assumptions on the system beyond consistency. The simplest, but also the least useful choice of a
distribution is to pick S = I (the m×m identity matrix), with probability one. In this case, all of our
reformulations become trivial.
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1.2 Stochastic algorithms

Besides proposing a family of stochastic reformulations of the linear system (1), we also propose three
stochastic algorithms for solving them: Algorithm 1 (basic method), Algorithm 2 (parallel/minibatch
method), and Algorithm 3 (accelerated method). Each method can be interpreted naturally from the
viewpoint of each of the reformulations.

Basic method. Below we list some of the interpretations of Algorithm 1 (basic method), which
performs updates of the form

xk+1 = φω(xk,Sk)
def
= xk − ωB−1A>Sk(S>kAB−1A>Sk)

†S>k (Axk − b), (6)

where Sk ∼ D is sampled afresh in each iteration. The method is formally presented and analyzed in
Section 4.

1. Stochastic gradient descent. Algorithm 1 can be seen as stochastic gradient descent [48], with
fixed stepsize, applied to (2). At iteration k of the method, we sample Sk ∼ D, and compute
∇fSk(xk), which is an unbiased stochastic approximation of ∇f(xk). We then perform the step

xk+1 = xk − ω∇fSk(xk), (7)

where ω > 0 is a stepsize.

Let us note that in order to achieve linear convergence it is not necessary to use any explicit
variance reduction strategy [52, 21, 23, 9], nor do we need to use decreasing stepsizes. This is
because the stochastic gradients vanish at the optimum, which is a consequence of the consistency
assumption. Surprisingly, we get linear convergence in spite of the fact that we deal with a non-
finite-sum problem (2), and without the need to assume boundedness of the stochastic gradients,
and without f being strongly convex. To the best of our knowledge, this is the first linearly
convergent accelerated method for stochastic optimization without requiring strong convexity.
This beats the minimax bounds given by Srebro [58]. This is because (2) is not a black-box
stochastic optimization objective; indeed, we have constructed it in a particular way from the
underlying linear system (1).

2. Stochastic Newton method. However, Algorithm 1 can also be seen as a stochastic Newton
method. At iteration k we sample Sk ∼ D, and instead of applying the inverted Hessian of fSk to
the stochastic gradient (this is not possible as the Hessian is not necessarily invertible), we apply
the B-pseudoinverse. That is, we perform the step

xk+1 = xk − ω(∇2fSk(xk))
†B∇fSk(xk), (8)

where ω > 0 is a stepsize, and the B-pseudoinverse of a matrix M is defined as M†B
def
=

B−1M>(MB−1M>)†. One may wonder why methods (7) and (8) are equivalent; after all, the
(stochastic) gradient descent and (stochastic) Newton methods are not equivalent in general.
However, in our setting it turns out that the stochastic gradient ∇fSk(x) is always an eigenvector
of (∇2fSk(x))†B , with eigenvalue 1 (see Lemma 3.1).

Stochastic Newton-type methods were recently developed and analyzed in the optimization and
machine learning literature [39, 38, 41, 29]. However, they are design to solve different problems,
and operate in a different manner.
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3. Stochastic proximal point method. If we restrict our attention to stepsizes satisfying 0 < ω ≤ 1,
then Algorithm 1 can be equivalently (see Theorem A.3 in the Appendix) written down as

xk+1 = arg min
x∈Rn

{
fSk(x) +

1− ω
2ω
‖x− xk‖2B

}
. (9)

That is, (9) is a stochastic variant of the proximal point method for solving (2), with a fixed
regularization parameter [49]. The proximal point method is obtained from (9) by replacing fSk
with f . If we define the prox operator of a function ψ : Rn → R with respect to the B-norm as

proxB
ψ (y)

def
= arg minx∈Rn

{
ψ(x) + 1

2‖x− y‖
2
B

}
, then iteration (9) can be written compactly as

xk+1 = proxB
ω

1−ω fSk
(xk).

4. Stochastic fixed point method. From the perspective of the stochastic fixed point problem
(4), Algorithm 1 can be interpreted as a stochastic fixed point method, with relaxation. We
first reformulate the problem into an equivalent form using relaxation, which is done to improve
the contraction properties of the map. We pick a parameter ω > 0, and instead consider the

equivalent fixed point problem x = ES∼D

[
ωΠB
LS(x) + (1− ω)x

]
. Now, at iteration k, we sample

Sk ∼ D, which enables us to obtain an unbiased estimate of the new fixed point mapping, and
then simply perform one step of a fixed point method on this mapping:

xk+1 = ωΠB
LSk

(xk) + (1− ω)xk. (10)

5. Stochastic projection method. Algorithm 1 can also be seen as a stochastic projection method
applied to the probabilistic intersection problem (5). By sampling Sk ∼ D, we are one of the
sets defining the intersection, namely LSk . We then project the last iterate onto this set, in the
B-norm, followed by a relaxation step with relaxation parameter ω > 0. That is, we perform the
update

xk+1 = xk + ω(ΠB
LSk

(xk)− xk). (11)

This is a randomized variant of an alternating projection method. Note that the representation of
L as a probabilistic intersection of sets is not given to us. Rather, we construct it with the hope
to obtain faster convergence.

An optimization algorithm utilizing stochastic projection steps was developed in [30]. For a
comprehensive survey of projection methods for convex feasibility problems, see [2].

Parallel method. A natural parallelization strategy is to perform one step of the basic method inde-
pendently τ times, starting from the same point xk, and average the results:

xk+1 =
1

τ

τ∑
i=1

φω(xk,S
i
k), (12)

where S1
k, . . . ,S

τ
k are independent samples from D (recall that φω is defined in (6)). This method is

formalized as Algorithm 2, and studied in Section 5.1. Betrayed by our choice of the name, this method
is useful in scenarios where τ parallel workers are available, allowing for the τ basic steps to be computed
in parallel, followed by an averaging operation.
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From the stochastic optimization viewpoint, this is a minibatch method. Considering the SGD
interpretation (7), we can equivalently write (12) in the form xk+1 = xk − 1

τ

∑τ
i=1∇fSik(xk). This is

minibatch SGD. Iteration complexity of minibatch SGD was first understood in the context of training
support vector machines with the hinge loss [61]. Complexity under a lock-free paradigm, in a different
setting from ours, was first studied in [36]. Notice that in the limit τ →∞, we obtain gradient descent.
It is therefore interesting to study the complexity of the parallel method as a function τ . Of course, this
method can also be interpreted as a minibatch stochastic Newton method, minibatch proximal point
method and so on.

From the probabilistic intersection point of view, method (12) can be interpreted as a stochastic
variant of the parallel projection method. In particular, we obtain the iterative process

xk+1 = xk + ω

[(
1

τ

τ∑
i=1

ΠB
L
Si
k

(xk)

)
− xk

]
.

That is, we move from the current iterate, xk, towards the average of the τ projection points, with
undershooting (if ω < 1), precisely landing on (if ω = 1), or overshooting (if ω > 1) the average.
Projection methods have a long history and are well studied [12, 3]. However, much less is known about
stochastic projection methods.

Accelerated method. In order to obtain acceleration without parallelization—that is, acceleration in
the sense of Nesterov [34]—we suggest to perform an update step in which xk+1 depends on both xk
and xk−1. In particular, we take two dependent steps of Algorithm 1, one from xk and one from xk−1,
and then take an affine combination of the results. That is, the process is started with x0, x1 ∈ Rn,
and for k ≥ 1 involves an iteration of the form

xk+1 = γφω(xk,Sk) + (1− γ)φω(xk−1,Sk−1), (13)

where the matrices {Sk} are independent samples from D, and γ ∈ R is an acceleration parameter.
Note that by choosing γ = 1 (no acceleration), we recover Algorithm 1. This method is formalized as
Algorithm 3 and analyzed in Section 5.2. Our theory suggests that γ should be always between 1 and 2.
In particular, for well conditioned problems (small ζ), one should choose γ ≈ 1, and for ill conditioned
problems (large ζ), one should choose γ ≈ 2.

1.3 Complexity

The complexity of our methods is completely described by the spectrum of the (symmetric positive
semidefinite) matrix

W
def
= B−1/2A>ES∼D [H]AB−1/2.

Let W = UΛU> be the eigenvalue decomposition of W, where U = [u1, . . . , un] are the eigenvectors,
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the eigenvalues, and Λ = Diag (λ1, . . . , λn). It can be shown that

the largest eigenvalue, λmax
def
= λ1 is bounded above by 1 (see Lemma 4.1). Let λ+min be the smallest

nonzero eigenvalue.
With all of the above reformulations we associate the same condition number

ζ = ζ(A,B,D)
def
= ‖W‖‖W†‖ =

λmax

λ+min

, (14)
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Alg. ω τ γ Quantity Rate Complexity Theorem

1 1 - - ‖E [xk − x∗] ‖2B (1− λ+min)
2k 1/λ+min 4.3, 4.4, 4.6

1 1/λmax - - ‖E [xk − x∗] ‖2B (1− 1/ζ)2k ζ 4.3, 4.4, 4.6
1 2

λ+
min+λmax

- - ‖E [xk − x∗] ‖2B (1− 2/(ζ + 1))2k ζ 4.3, 4.4, 4.6

1 1 - - E
[
‖xk − x∗‖2B

]
(1− λ+min)

k 1/λ+min 4.8

1 1 - - E [f(xk)] (1− λ+min)
k 1/λ+min 4.10

2 1 τ - E
[
‖xk − x∗‖2B

] (
1− λ+min (2− ξ(τ))

)k
5.1

2 1/ξ(τ) τ - E
[
‖xk − x∗‖2B

] (
1− λ+

min
ξ(τ)

)k
ξ(τ)/λ+min 5.1

2 1/λmax ∞ - E
[
‖xk − x∗‖2B

]
(1− 1/ζ)k ζ 5.1

3 1 - 2

1+
√

0.99λ+
min

‖E [xk − x∗] ‖2B

(
1−

√
0.99λ+min

)2k √
1/λ+min 5.3

3 1/λmax - 2

1+
√

0.99/ζ
‖E [xk − x∗] ‖2B

(
1−

√
0.99/ζ

)2k √
ζ 5.3

Table 1: Summary of the main complexity results. In all cases, x∗ = ΠB
L (x0) (the projection of

the starting point onto the solution space of the linear system). “Complexity” refers to the number
of iterations needed to drive “Quantity” below some error tolerance ε > 0 (we suppress a log(1/ε)
factor in all expressions in the “Complexity” column). In the table we use the following expressions:
ξ(τ) = 1

τ + (1− 1
τ )λmax and ζ = λmax/λ

+
min.

where ‖ · ‖ is the spectral norm, λmax is the largest eigenvalue of W and λ+min is the smallest nonzero
eigenvalue of W. Note that, for example, ζ is the condition number of the Hessian of f , and also
the condition number of the stochastic linear system (3). Natural interpretations from the viewpoint
of the stochastic fixed point and probabilistic intersection problems are also possible. As one varies
the parameters defining the reformulation (D and B), the condition number changes. For instance,
choosing S = I with probability one gives ζ = 1.

Exact formula for the evolution of expected iterates. We first show (Theorem 4.3) that after the
canonical linear transformation x 7→ U>B1/2x, the expected iterates of the basic method satisfy the
identity

E
[
U>B1/2(xk − x∗)

]
= (I− ωΛ)kU>B1/2(x0 − x∗), (15)

where x∗ is an arbitrary solution of the linear system (i.e., x∗ ∈ L). This identity seems to suggest that
zero eigenvalues cause an issue, preventing convergence of the corresponding elements of the error to
zero. Indeed, if λi = 0, then (15) implies that u>i B

1/2(xk − x∗) = u>i B
1/2(x0 − x∗), which does not

change with k. However, it turns out that under exactness we have u>i B
1/2(x0 − x∗) = 0 whenever

λi = 0 if we let x∗ to be the projection, in the B-norm, of x0 onto L (Theorem 4.3). This is then used
to argue (Corollary 4.4) that ‖E [xk − x∗] ‖B converges to zero if and only if 0 < ω < 2/λmax. The
choice of stepsize issue is discussed in detail in Section 4.4.

The main complexity results obtained in this paper are summarized in Table 1. The full statements
including the dependence of the rate on these parameters, as well as other alternative results (such as
lower bounds, ergodic convergence) can be found in the theorems referenced in the table.

L2 convergence. The rate of decay of the quantity ‖E [xk − x∗] ‖2B for three different stepsize choices
is summarized in the first three rows of Table 1. In particular, the default stepsize ω = 1 leads to the
complexity 1/λ+min, the long stepsize ω = 1/λmax gives the improved complexity λmax/λ

+
min, and the
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optimal stepsize ω = 2/(λmax + λ+min) gives the best complexity 0.5 + 0.5λmax/λ
+
min. However, if we

are interested in the convergence of the larger quantity E
[
‖xk − x∗‖2B

]
(L2 convergence), it turns out

that ω = 1 is the optimal choice, leading to the complexity 1/λ+min.

Parallel and accelerated methods. The parallel method improves upon the basic method in that
it is capable of faster L2 convergence. We give a complexity formula as a function of τ , recovering
the complexity the 1/λ+min rate of the basic method in the τ = 1 case, and achieving the improved
asymptotic complexity λmax/λ

+
min as τ →∞ (recall that λmax ≤ 1, whence the improvement). Because

of this, λmax is the quantity driving parallelizability. If λmax is close to 1, then there is little or no reason
to parallelize. If λmax is very small, parallelization helps. The smaller λmax is, the more gain is achieved
by utilizing more processors.

With the correct stepsize (ω) and acceleration (γ) parameters, the accelerated method improves the

complexity λmax/λ
+
min achieved by the basic method to

√
λmax/λ

+
min. However, this is established for

the quantity E
[
‖xk − x∗‖2B

]
. We conjecture that the L2 convergence rate of the accelerated method

(for a suitable choice of the parameters ω and γ) is
√

1/λ+min.

1.4 Stochastic preconditioning

We coin the phrase stochastic preconditioning to refer to the general problem of designing matrix B
and distribution D such that the appropriate condition number of W is well behaved. For instance,
one might be interested in minimizing (or reducing) the condition number 1/λ+min if the basic method
with unit stepsize is used, and the quantity we wish to converge to zero is either E

[
‖xk − x∗‖2B

]
,

‖E [xk − x∗] ‖2B, or E [f(xk)] (see Lines 1, 4 and 5 of Table 1). On the other hand, if we can estimate
λmax, then one may use the basic method with the larger stepsize 1/λmax, in which case we may wish
to minimize (or reduce) the condition number λmax/λ

+
min (see Line 2 of Table 1).

One possible approach to stochastic preconditioning is to choose some B and then focus on a
reasonably simple parametric family of distributions D, trying to find the parameters which minimize (or
reduce) the condition number of interest. The distributions in this family should be “comparable” in the
sense that the cost of one iteration of the method of interest should be comparable for all distributions;
as otherwise comparing bounds on the number of iterations does not make sense.

To illustrate this through a simple example, consider the family of discrete uniform distributions
over m vectors in Rm (that is, S1, . . . ,Sm ∈ Rm×1), where the vectors themselves are the parameters
defining the family. The cost of one iteration of the basic method will be proportional to the cost of
performing a matrix-vector product of the form S>A, which is comparable across all distributions in
the family (assuming the vectors are dense, say). To illustrate this approach, consider this family, and
further assume that A is n× n symmetric and positive definite. Choose B = A. It can be shown that
1/λ+min is maximized precisely when {Si} correspond to the eigenvectors of A. In this case, 1/λ+min = n,
and hence our stochastic preconditioning strategy results in a condition number which is independent
of the condition number of A. If we now apply the basic method to the stochastic optimization
reformulation, we can interpret it as a spectral variant of stochastic gradient descent (spectral SGD).
Ignoring logarithmic terms, spectral SGD only needs to perform n matrix vector multiplications to solve
the problem. While this is not a practical preconditioning strategy—computing the eigenvectors is hard,
and if we actually had access to them, we could construct the solution directly, without the need to resort
to an iterative scheme—it sheds light on the opportunities and challenges associated with stochastic
preconditioning.
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All standard sketching matrices S can be employed within our framework, including the count
sketch [6] and the count-min sketch [8]. In the context to this paper (since we sketch with the transpose
of S), S is a count-sketch matrix (resp. count-min sketch) if it is assembled from random columns of
[I,−I] (resp I), chosen uniformly with replacement, where I is the m×m identity matrix.

The notion of importance sampling developed in the last 5 years in the randomized optimization and
machine learning literature [45, 64, 42, 40] can be seen a type of stochastic preconditioning, somewhat
reverse to what we have outlined above. In these methods, the atoms forming the distribution D are
fixed, and one is seeking to associate them with appropriate probabilities. Thus, the probability simplex
is the parameter space defining the class of distributions one is considering.

Stochastic preconditioning is fundamentally different from the idea of randomized preconditioning
[50, 1], which is based on a two-stage procedure. In the first step, the input matrix is randomly projected
and an good preconditioning matrix is extracted. In the second step, an iterative least squares solver is
applied to solve the preconditioned system.

Much like standard preconditioning, different stochastic preconditioning strategies will need to be
developed for different classes of problems, with structure of A informing the choice of B and D. Due
to its inherent difficulty, stochastic preconditioning is beyond the scope of this paper.

1.5 Notation

For convenience, a table of the most frequently used notation is included in Appendix D. All matrices
are written in bold capital letters. By Range (M) and Null (M) we mean the range space and null
space of matrix M, respectively. Given a symmetric positive definite matrix B ∈ Rn×n, we equip

Rn with the Euclidean inner product defined by 〈x, h〉B
def
= x>Bh. We also define the induced norm:

‖x‖B
def
=
√
〈x, x〉B. The short-hand notation ‖ · ‖ means ‖ · ‖I, where I is the identity matrix. We shall

often write ‖x‖M for matrix M ∈ Rn×n being merely positive definite; this constitutes a pseudonorm.

2 Further Connections to Existing Work

In this section we outline several connections of our work with existing developments. We do not aim
to be comprehensive.

2.1 Randomized Kaczmarz method, with relaxation and acceleration

Let B = I, and choose D as follows: S = ei with probability pi = ‖Ai:‖22/‖A‖2F . Since

W = B−1/2E [Z]B−1/2 = E [Z] =
m∑
i=1

pi
A>i:Ai:

‖Ai:‖22
=

1

‖A‖2F

m∑
i=1

A>i:Ai: =
A>A

‖A‖2F
.

the condition number is

ζ = ‖W‖‖W†‖ = ‖E [Z] ‖‖E [Z]† ‖ =
λmax(A>A)

λ+min(A>A)
. (16)

Basic method. In this setup, Algorithm 1 simplifies to

xk+1 = xk −
ω(Ai:xk − bi)
‖Ai:‖22

A>i: .
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For ω = 1, this reduces to the celebrated randomized Kaczmarz method (RK) of Strohmer and
Vershyinin [60]. For ω > 1, this is RK with overrelaxation – a new method not considered before.
Based on Theorem 4.6, for ω ∈ [1/λmax, ω∗] the iteration complexity of Algorithm 1 is

Õ(ζ)
(16)
=

λmax(A>A)

λ+min(A>A)
.

This is an improvement on standard RK method (with ω = 1), whose complexity depends on Trace
(
A>A

)
instead of λmax. Thus, the improvement can be as large as by a factor n.

Accelerated method. In the same setup, Algorithm 3 simplifies to

xk+1 = γ

(
xk −

ω(Aik:xk − bik)

‖Aik:‖22
A>ik:

)
+ (1− γ)

(
xk−1 −

ω(Aik−1:xk−1 − bik−1
)

‖Aik−1:‖22
A>ik−1:

)
This is accelerated RK method with overrelaxation – a new method not considered before. Based on
Theorem 5.3, for the parameter choice ω = 1/λmax and γ = 2/(1 + ζ−2), the iteration complexity of
this method is

Õ(
√
ζ)

(16)
=

√
λmax(A>A)

λ+min(A>A)
.

If we instead choose ω = 1 and γ = 2/(1 + ζ−2), the iteration complexity gets slightly worse:

1/
√
λ+min(A>A). To the best of our knowledge, this is the best known complexity for a variant of

RK. Let us remark that an asynchronous accelerated RK method was developed in [25].
The randomized Kaczmarz method, its variants have received considerable attention recently [31,

65, 32, 43], and several connections to existing methods were made. Kaczmarz-type methods in a
Hilbert setting were developed in [37].

2.2 Basic method with unit stepsize

The method xk+1 ← ΠB
LSk

(xk) was first proposed and analyzed (under a full rank assumption on A)

in [17]. Note that in view of (10), this is the basic method with unit stepsize. However, it was not
interpreted as a method for solving any of the reformulations presented here, and as a result, all the
interpretations we are giving here also remained undiscovered. Instead, it was developed and presented
as a method for finding the unique solution of (1).

2.3 Duality

As we have seen, all three methods developed in this paper converge to a specific solution of the linear
system (1), namely, to the projection of the starting point onto the solution space: x∗ = ΠB

L (x0).
Therefore, our methods solve the best approximation problem

min
x∈Rn
{‖x− x0‖2B : Ax = b}. (17)

The “dual” of the basic method with unit stepsize was studied in this context in [18]. The Fenchel dual
of the best approximation problem is an unconstrained concave quadratic maximization problem of the
form maxy∈Rm D(y), where the dual objective D depends on A, b,B and x0. In [18] it was shown that
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the basic method with unit stepsize closely related to a dual method (stochastic dual subspace ascent)
performing iterations of the form

yk+1 = yk + Skλk, (18)

where Sk ∼ D, and λk is chosen in such a way that the dual objective is as large as possible. Notice that
the dual method in each iteration performs exact “line search” in a random subspace of Rm spanned by
the columns of the random matrix Sk, and passing through yk. In particular, the iterates of the basic
method with unit stepsize arise as affine images of the iterates of the dual method: xk = x0+B−1A>yk.

In a similar fashion, it is possible to interpret the methods developed in this paper as images
of appropriately designed dual methods. In [18], the authors focus on establishing convergence of
various quantities, such as dual objective, primal-dual gap, primal objective and so on. They obtain the
complexity 1/λ+min, which is identical to the rate we obtain here for the basic method with unit stepsize.
However, their results require a stronger assumption on D (their assumption implies exactness, but not
vice versa). We perform a much deeper analysis from the novel viewpoint of stochastic reformulations
of linear systems, include a stepsize, and propose and analyze parallel and accelerated variants.

In the special case when S is chosen to be a random unit coordinate vector, (18) specializes to
the randomized coordinate descent method, first analyzed by Leventhal and Lewis [24]. In the special
case when S is chosen as a random column submatrix of the m ×m identity matrix, (18) specializes
to the randomized Newton method of Qu et al. [41]. Randomized coordinate descent methods are the
state of the art methods for certain classes of convex optimization problems with a very large number
of variables. The first complexity analysis beyond quadratics was performed in [54, 35, 46], a parallel
method was developed in [47], duality was explored in [55] and acceleration in [14].

2.4 Randomized gossip algorithms

It was shown in [17, 26] that for a suitable matrix A encoding the structure of a graph, and for b = 0,
the application of the randomized Kaczmarz and randomized block Kaczmarz methods to (17) lead to
classical and new randomized gossip algorithms developed and studied in the signal processing literature,
with new insights and novel proofs. Likewise, when applied in the same context, our new methods lead
to new parallel and accelerated gossip algorithms.

2.5 Empirical risk minimization

Regularized empirical risk minimization (ERM) problems are optimization problems of the form

min
x∈Rn

1

m

m∑
i=1

fi(x) + g(x), (19)

where fi is a loss function and g a regularizer. Problems of this form are of key importance in machine
learning and statistics [53]. Let fi(x) = 0 if Ai:x = bi and fi(x) = +∞ otherwise, further let
g(x) = ‖x−x0‖2B. In this setting, the ERM problem (19) becomes equivalent to (17). While quadratic
regularizers similar to g are common in machine learning, zero/infinity loss functions are not used. For
this reason, this specific instance of ERM was not studied in the machine learning literature. Since all
our methods solve (17), they can be seen as stochastic algorithms for solving the ERM problem (19).

Since there is no reason to expect that any of our methods will satisfy Axk = b for any finite k, the
ERM objective value can remain to be equal to +∞ throughout the entire iterative process. From this
perspective, the value of the ERM objective is unsuitable as a measure of progress.
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2.6 Matrix inversion and quasi-Newton methods

Given an invertible matrix A, its inverse is the unique solution of the matrix equation AX = I. In [20]
the authors have extended the “sketch and project” method [17] to this equation. In each iteration of
the method, one projects the current iterate matrix Xk, with respect to a weighted Frobenius norm,
onto the sketched equation S>kAX = S>k I. This is a similar iterative process to the basic method with
unit stepsize. The authors of [20] prove that the iterates of method converge to the inverse matrix
at a linear rate, and detail connections of their method to quasi-Newton updates and approximate
inverse preconditioning. A limited memory variant of the stochastic block BFGS method has been
used to develop new efficient stochastoc quasi-Newton methods for emprical risk minimization problems
appearing in machine learning [16].

It is possible to approach the problem AX = I in the same way we approach the system (1) in
our paper, writing down stochastic reformulations, and then developing new variants of the sketch
and project method [20]: a basic method with a stepsize, and parallel and accelerated methods. This
would lead to the development of new variants of stochastic quasi-Newton rules, notably parallel and
accelerated block BFGS. We conjecture that these rules will have superior performance to classical BFGS
in practice.

Similar extensions and improvements can be done in relation to the problem of computing the
pseudoinverse of very large rectangular matrices [19].

3 Stochastic Reformulations of Linear Systems

In this section we formally derive the four stochastic formulations outlined in the introduction: stochastic
optimization, stochastic linear system, stochastic fixed point problem and probabilistic intersection.
Along the way we collect a number of results and observations which will be useful in the complexity
analysis of our methods.

3.1 Projections

For a closed convex set Y ⊆ Rn, we let ΠB
Y denote the projection operator onto Y, in the B-norm.

That is, ΠB
Y (x)

def
= arg miny∈Rn {‖y − x‖B : y ∈ Y} . The B-pseudoinverse of a matrix M is defined

as
M†B

def
= B−1M>(MB−1M>)†. (20)

The projection onto L = {x : Ax = b} is given by

ΠB
L (x) = x−B−1A>(AB−1A>)†(Ax− b) (20)

= x−A†B(Ax− b). (21)

Note that for B = I, we get A†I = A>(AA>)† = A†, and hence the I-pseudoinverse re-
duces to the standard Moore-Penrose pseudoinverse. The B-pseudoinverse satisfies A†Bb = ΠB

L (0) =
arg minx{‖x‖B : Ax = b}.

3.2 Stochastic functions

Let D be an arbitrary distribution over m × q matrices, which we shall denote as S. We shall write
S ∼ D to say that S is drawn from D. We shall often refer to matrix expressions involving S,A and
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B. In order to keep the expressions brief throughout the paper, it will be useful to define

H
def
= S(S>AB−1A>S)†S>, (22)

and

Z
def
= A>HA

(22)
= A>S(S>AB−1A>S)†S>A. (23)

Notice that B−1Z is the projection, in the B-norm, onto Range
(
B−1A>S

)
. In particular,

(B−1Z)2 = B−1Z and ZB−1Z = Z. (24)

Given S ∼ D, we define the stochastic (random) function

fS(x)
def
=

1

2
‖Ax− b‖2H =

1

2
(Ax− b)>H(Ax− b). (25)

By combining (25) and (23), this can be also written in the form

fS(x) =
1

2
(x− x∗)>Z(x− x∗), x ∈ Rn, x∗ ∈ L. (26)

For each x, h ∈ Rn we have the expansion fS(x+ h) = fS(x) + 〈∇fS(x), h〉B + 1
2

〈
(∇2fS)h, h

〉
B

,
where

∇fS(x) = B−1A>H(Ax− b) and ∇2fS = B−1Z (27)

are the gradient and Hessian of fS with respect to the B-inner product, respectively.1 In view of (23)
and (27), the gradient can also be written as

∇fS(x) = B−1Z(x− x∗), x ∈ Rn, x∗ ∈ L. (28)

Identities (29) in the following lemma explain why algorithm (6) can be equivalently written as
stochastic gradient descent (7), stochastic Newton method (8), stochastic fixed point method (10),
and stochastic projection method (11). For instance, the identity (∇2fS)∇fS(x) = ∇fS(x) means
that the stochastic gradients of fS are eigenvectors of the stochastic Hessian ∇2fS, corresponding to
eigenvalue one.

Lemma 3.1. For all x ∈ Rn, we have

∇fS(x) = (∇2fS)∇fS(x) = (∇2fS)†B∇fS(x) = x−ΠB
LS(x) = B−1A>H(Ax− b). (29)

Moreover,

fS(x) =
1

2
‖∇fS(x)‖2B. (30)

If LS is the set of minimizers of fS, then L ⊆ LS, and

(i) LS = {x : fS(x) = 0} = {x : ∇fS(x) = 0}

(ii) LS = x∗ + Null
(
B−1Z

)
for all x∗ ∈ L

(iii) LS = {x : B−1A>HAx = B−1A>Hb} (see (3))

1If B = I, then 〈·, ·〉B is the standard Euclidean inner product, and we recover formulas for the standard gradient and
Hessian. Note that B−1Z is both self-adjoint and positive semidefinite with respect to the B-inner product. Indeed, for
all x, y ∈ Rn we have

〈
B−1Zx, y

〉
B
= 〈Zx, y〉I = 〈x,Zy〉I =

〈
x,B−1Zy

〉
B

, and
〈
B−1Zx, x

〉
B
= 〈Zx, x〉I ≥ 0.

13



(iv) LS = {x : S>Ax = S>b} (see (5))

Finally, for all x ∈ Rn we have the identity

fS(x−∇fS(x)) = 0. (31)

Proof. Pick any x∗ ∈ L. First, we have ΠB
LS(x)

(21)
= x − B−1A>H(Ax − b) (27)

= x − ∇fS(x). To
establish (29), it now only remains to consider the two expressions involving the Hessian. We have

∇2fS∇fS(x)
(27)+(28)

= B−1ZB−1Z(x− x∗)
(24)
= B−1Z(x− x∗)

(28)
= ∇fS(x),

and

(∇2fS)†B∇fS(x)
(20)
= B−1(∇2fS)>

(
(∇2fS)B−1(∇2fS)>

)†
∇fS(x)

(27)
= B−1(B−1Z)>

(
(B−1Z)B−1(B−1Z)>

)†
B−1Z(x− x∗)

= B−1ZB−1
(
B−1ZB−1ZB−1

)†
B−1Z(x− x∗)

(24)
=

(
B−1ZB−1

) (
B−1ZB−1

)† (
B−1ZB−1

)
B(x− x∗)

= B−1Z(x− x∗)
(28)
= ∇fS(x).

Identity (30) follows from

1

2
‖∇fS(x)‖2B

(28)
=

1

2
(x− x∗)>ZB−1Z(x− x∗)

(24)
=

1

2
(x− x∗)>Z(x− x∗)

(26)
= fS(x).

If x ∈ L, then by picking x∗ = x in (28), we see that x ∈ LS. It remains to show that the sets
defined in (i)–(iv) are identical. Equivalence between (i) and (ii) follows from (28). Now consider (ii)
and (iii). Any x∗ ∈ L belongs to the set defined in (iii), which follows immediately by substituting
b = Ax∗. The rest follows after observing the nullspaces are identical. In order to show that (iii) and
(iv) are equivalent, it suffices to compute ΠB

LS(x) and observe that ΠB
LS(x) = x if and only if x belongs

to the set defined in (iii).
It remains to establish (31). In view of (i), it suffices to show that x − ∇fS(x) ∈ LS. However,

from (29) we know that x−∇fS(x) = ΠB
LS(x) ∈ LS.

3.3 Stochastic reformulation

In order to proceed, we shall enforce a basic assumption on D.

Assumption 3.2 (Finite mean). The random matrix H has a mean. That is, the matrix ES∼D [H] =
ES∼D

[
S(S>AB−1A>S)†S>

]
has finite entries.

This is an assumption on D since a suitable distribution satisfying it exists for all A ∈ Rm×n and
B � 0. Note that if the assumption holds, then E [H] is symmetric and positive semidefinite. We shall
enforce this assumption throughout the paper and hence will not henceforth refer to it.
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Example 1. Let D be the uniform distribution over unit basis vectors in Rm. That is, S = ei (the ith
unit basis vector in Rm) with probability 1/m. Then

E [H] =
m∑
i=1

1

m
ei(Ai:B

−1A>i: )
†e>i =

1

m
Diag (α1, . . . , αm) ,

where αi = 1/‖A>i: ‖2B−1 for i = 1, 2, . . . ,m. If A has nonzero rows, then E [H] � 0.

In this paper we reformulate the linear system (1) as the stochastic optimization problem

min
x∈Rn

{
f(x)

def
= ES∼D [fS(x)]

}
(32)

Under Assumption 3.2, the expectation in (32) is finite for all x, and hence f is well defined. The
following is a direct consequence of Lemma 3.1. We shall use these formulas throughout the paper.

Lemma 3.3 (Representations of f). Function f defined in (32) can be represented in multiple ways:

f(x) =
1

2
E
[
‖x−ΠB

LS(x)‖2B
]

=
1

2
E
[
‖∇fS(x)‖2B

]
.

Moreover,

f(x)
(25)
=

1

2
‖Ax− b‖2E[H] =

1

2
(Ax− b)>E [H] (Ax− b), (33)

and for any x∗ ∈ L we can write

f(x) =
1

2
(x− x∗)>E [Z] (x− x∗). (34)

Since E [H] � 0, f is a convex quadratic function. Moreover, f is nonnegative. The gradient and
Hessian of f (with respect to the B-inner product) are given by

∇f(x) = ES∼D [∇fS(x)] = B−1E [Z] (x− x∗), and ∇2f = B−1E [Z] , (35)

respectively, where x∗ is any point in L.
The set of minimizers of f , denoted X , can be represented in several ways, as captured by our next

result. It immediately follows that the four stochastic formulations mentioned in the introduction are
equivalent.

Theorem 3.4 (Equivalence of stochastic formulations). Let x∗ ∈ L. The following sets are identical:

(i) X = arg min f(x) = {x : f(x) = 0} = {x : ∇f(x) = 0} (see (2))

(ii) X = {x : B−1A>E [H]Ax = B−1A>E [H] b} = x∗ + Null (E [Z]) (see (3))

(iii) X = {x : E
[
ΠB
LS(x)

]
= x} (see (4))

(iv) X = {x : Prob(x ∈ LS) = 1} (see (5))
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As a consequence, the stochastic problems (2), (3), (4), and (5) are equivalent (i.e., their solutions
sets are identical). Moreover, the set X does not depend on B.

Proof. As f is convex, nonnegative and achieving the value of zero (since L 6= ∅), the sets in (i) are
all identical. We shall now show that the sets defined in (ii)–(iv) are equal to that defined in (i). Using
the formula for the gradient from (35), we see that {x : ∇f(x) = 0} = {x : B−1E [Z] (x − x∗) =
0} = {x : E [Z] (x − x∗) = 0} = x∗ + {h : E [Z]h = 0} = x∗ + Null (E [Z]), which shows that
(i) and (ii) are the same. Equivalence of (i) and (iii) follows by taking expectations in (29) to obtain

∇f(x) = E [∇fS(x)]
(29)
= E

[
x−ΠB

LS(x)
]
.

It remains to establish equivalence between (i) and (iv). Let

X = {x : f(x) = 0} (Lemma 3.3)
=

{
x : E

[∥∥x−ΠB
LS(x)

∥∥2
B

]
= 0
}

(36)

and let X ′ be the set from (iv). For easier reference, let ξS(x)
def
=
∥∥∥x−ΠB

LS(x)
∥∥∥2
B

. The following three

probabilistic events are identical:

[x ∈ LS] =
[
x = ΠB

LS(x)
]

= [ξS(x) = 0] . (37)

Therefore, if x ∈ X ′, then the random variable ξS(x) is equal to zero with probability 1, and hence
x ∈ X . Let us now establish the reverse inclusion. First, let 1[ξS(x)≥t] be the indicator function of the
event [ξS(x) ≥ t]. Note that since ξS(x) is a nonnegative random variable, for all t ∈ R we have the
inequality

ξS(x) ≥ t1ξS(x)≥t. (38)

Now take x ∈ X and consider t > 0. By taking expectations in (38), we obtain

0 = E [ξS(x)] ≥ E
[
t1ξS(x)≥t

]
= tE

[
1ξS(x)≥t

]
= tProb(ξS(x) ≥ t),

which implies that Prob(ξS(x) ≥ t) = 0. Now choose ti = 1/i for i = 1, 2, . . . and note that the event
[ξS(x) > 0] can be written as

[ξS(x) > 0] =
∞⋃
i=1

[ξS(x) ≥ ti].

Therefore, by the union bound, Prob(ξS(x) > 0) = 0, which immediately implies that Prob(ξS(x) =
0) = 1. From (37) we conclude that x ∈ X ′.

That X does not depend on B follows from representation (iv).

3.4 Exactness of the Reformulations

In this section ask the following question: when are the stochastic formulations (2), (3), (4), (5)
equivalent to the linear system (1)? This leads to the concept of exactness, captured by the following
assumption.

Assumption 3.5 (Exactness). Stochastic reformulations (2), (3), (4), (5) of problem (1) are exact.
That is, X = L.

We do not need this assumption for all our results, and hence we will specifically invoke it when
needed. For future reference in the paper, it will be useful to be able to draw upon several equivalent
characterizations of exactness.
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Theorem 3.6 (Exactness). The following statements are equivalent:

(i) Assumption 3.5 holds

(ii) Null (E [Z]) = Null (A)

(iii) Null
(
B−1/2E [Z]B−1/2

)
= Null

(
AB−1/2

)
(iv) Range (A) ∩Null (E [H]) = {0}

Proof. Choose any x∗ ∈ L. We know that L = x∗ + Null (A). On the other hand, Theorem 3.4
says that X = x∗ + Null (E [Z]). This establishes equivalence of (i) and (ii). If (ii) holds, then
Null (A) = Null (E [Z]) = Null

(
B−1/2E [Z]

)
, and (iii) follows. If (iii) holds, then Null (A) =

Null
(
B−1/2E [Z]

)
= Null (E [Z]), proving (ii). We now show that (ii) and (iv) are equivalent. First,

note that E [Z] = A>(E [H])1/2(E [H])1/2A. Therefore, Null (E [Z]) = Null
(
(E [H])1/2A

)
. Moreover,

we know that a) Null
(
(E [H])1/2A

)
= Null (A) if and only if Range (A) ∩ Null

(
(E [H])1/2

)
= {0},

and b) Null
(
(E [H])1/2

)
= Null (E [H]). It remains to combine these observations.

We now list two sufficient conditions for exactness.

Lemma 3.7 (Sufficient conditions). Any of these conditions implies that Assumption 3.5 is satisfied:

(i) E [H] � 0

(ii) Null (E [H]) ⊆ Null
(
A>
)

Proof. If (i) holds, then Null (E [Z]) = Null
(
A>E [H]A

)
= Null (A), we have exactness by applying

Theorem 3.6. Finally, (ii) implies statement (iv) in Theorem 3.6, and hence exactness follows.

4 Basic Method

We propose solving (33) by Algorithm 1. In the rest of this section we offer several equivalent interpre-
tations of the method.

Algorithm 1 Basic Method

1: Parameters: distribution D from which to sample matrices; positive definite matrix B ∈ Rn×n;
stepsize/relaxation parameter ω ∈ R

2: Choose x0 ∈ Rn . Initialization
3: for k = 0, 1, 2, . . . do
4: Draw a fresh sample Sk ∼ D
5: Set xk+1 = xk − ωB−1A>Sk(S>kAB−1A>Sk)

†S>k (Axk − b)

Remark 1. Since S is random, the matrices H = S(S>AB−1A>S)†S> and Z = A>HA are also
random. At iteration k of our algorithm, we sample matrix Sk ∼ D and perform an update step. It will
be useful to to use the notation Hk = Sk(S

>
kAB−1A>Sk)

†S>k and Zk = A>HkA. In this notation,
Algorithm 1 can be written in the form xk+1 = xk − ωB−1A>Hk(Axk − b).

In the rest of this section we analyze Algorithm 1.
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4.1 Condition number of the stochastic reformulation

Recall that the Hessian of f is given by

∇2f = ES∼D
[
∇2fS

]
= B−1E [Z] . (39)

Since B−1E [Z] is not symmetric (although it is self-adjoint with respect to the B-inner product), it will
be more convenient to instead study the spectral properties of the related matrix B−1/2E [Z]B−1/2.
Note that this matrix is symmetric, and has the same spectrum as B−1E [Z]. Let

W
def
= B−1/2E [Z]B−1/2 = UΛU> =

n∑
i=1

λiuiu
>
i (40)

be the eigenvalue decomposition of W, where U = [u1, . . . , un] ∈ Rn×n is an orthonormal matrix
composed of eigenvectors, and Λ = Diag (λ1, λ2, . . . , λn) is a diagonal matrix of eigenvalues. Assume
without loss of generality that the eigenvalues are ordered from largest to smallest: λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0. We shall often write λmax = λ1 to denote the largest eigenvalue, and λmin = λn for the
smallest eigenvalue.

Lemma 4.1. 0 ≤ λi ≤ 1 for all i.

Proof. Since B−1/2ZB−1/2 is symmetric positive semidefinite, so is its expectation W, implying that
λi ≥ 0 for all i. Further, note that B−1/2ZB−1/2 is a projection matrix. Indeed, it is the projection (in
the standard I-norm) onto Range

(
B−1/2A>S

)
. Therefore, its eigenvalues are all zeros or ones. Since

the map X 7→ λmax(X) is convex, by Jensen’s inequality we get

λmax(W) = λmax

(
E
[
B−1/2ZB−1/2

])
≤ E

[
λmax(B−1/2ZB−1/2)

]
≤ 1.

It follows from Assumption 3.5 that λmax > 0. Indeed, if we assume that λi = 0 for all i, then from
Theorem 3.6 and the fact that Null (W) = Range (ui : λi = 0) we conclude that Null

(
AB−1/2

)
=

Rn, which in turn implies that Null (A) = Rn. This can only happen if A = 0, which is a trivial case
we excluded from consideration in this paper by assumption.

Now, let j be the largest index for which λj > 0. We shall often write λ+min = λj . If all eigenvalues
{λi} are positive, then j = n.

We now define the condition number of problem (32) to be the quantity

ζ
def
= ‖W‖‖W†‖ =

λmax

λ+min

. (41)

Lemma 4.2 (Quadratic bounds). For all x ∈ Rn and x∗ ∈ L we have

λ+min · f(x) ≤ 1

2
‖∇f(x)‖2B ≤ λmax · f(x). (42)

and

f(x) ≤ λmax

2
‖x− x∗‖2B. (43)

18



Moreover, if Assumption 3.5 holds, then for all x ∈ Rn and x∗ = ΠB
L (x) we have

λ+min

2
‖x− x∗‖2B ≤ f(x). (44)

Proof. In view of (34) and (40), we obtain a spectral characterization of f :

f(x) =
1

2

n∑
i=1

λi

(
u>i B

1/2(x− x∗)
)2
, (45)

where x∗ is any point in L. On the other hand, in view of (35) and (40), we have

‖∇f(x)‖2B = ‖B−1E [Z] (x− x∗)‖2B = (x− x∗)>E [Z]B−1E [Z] (x− x∗)
= (x− x∗)>B1/2(B−1/2E [Z]B−1/2)(B−1/2E [Z]B−1/2)B1/2(x− x∗)
= (x− x∗)>B1/2U(U>B−1/2E [Z]B−1/2U)(U>B−1/2E [Z]B−1/2U)U>B1/2(x− x∗)
(40)
= (x− x∗)>B1/2UΛ2U>B1/2(x− x∗)

=
n∑
i=1

λ2i

(
u>i B

1/2(x− x∗)
)2
. (46)

Inequality (42) follows by comparing (45) and (46), using the bounds λ+minλi ≤ λ2i ≤ λmaxλi, which
hold for i for which λi > 0.

We now move to the bounds involving norms. First, note that for any x∗ ∈ L we have

f(x)
(34)
=

1

2
(x− x∗)>E [Z] (x− x∗) =

1

2
(B1/2(x− x∗))>(B−1/2E [Z]B−1/2)B1/2(x− x∗). (47)

The upper bound follows by applying the inequality B−1/2E [Z]B−1/2 � λmaxI. If x∗ = ΠB
L (x), then

in view of (21), we have B1/2(x− x∗) ∈ Range
(
B−1/2A>

)
. Applying Lemma B.1 to (47), we get the

lower bound.

Remark 2. Bounds such as those in Lemma 4.2 are often seen in convex optimization. In particular,
if φ : Rn → R is a µ-strongly convex and L-smooth function, then µ(φ(x) − φ∗) ≤ 1

2‖∇φ(x)‖2 ≤
L(φ(x) − φ∗) for all x ∈ Rn, where φ∗ = minx φ(x). In our case, the optimal objective value is zero.
The presence of B-norm is due to us defining gradients using the B-inner product. Moreover, it is the
case that f is λmax-smooth, which explains the upper bound. However, f is not necessarily µ-strongly
convex for any µ > 0, since E [Z] is not necessarily positive definite. However, we still obtain a nontrivial
lower bound.

4.2 Convergence of expected iterates

We now present a fundamental theorem precisely describing the evolution of the expected iterates of
the basic method.

Theorem 4.3 (Convergence of expected iterates). Choose any x0 ∈ Rn and let {xk} be the random
iterates produced by Algorithm 1.
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1. Let x∗ ∈ L be chosen arbitrarily. Then

E [xk+1 − x∗] =
(
I− ωB−1E [Z]

)
E [xk − x∗] . (48)

Moreover, by transforming the error via the linear mapping h→ U>B1/2h, this can be written
in the form

E
[
U>B1/2(xk − x∗)

]
= (I− ωΛ)kU>B1/2(x0 − x∗), (49)

which is separable in the coordinates of the transformed error:

E
[
u>i B

1/2(xk − x∗)
]

= (1− ωλi)ku>i B1/2(x0 − x∗), i = 1, 2, . . . , n. (50)

Finally,

‖E [xk − x∗] ‖2B =
n∑
i=1

(1− ωλi)2k
(
u>i B

1/2(x0 − x∗)
)2
. (51)

2. Assumption 3.5 hold and let x∗ = ΠB
L (x0). Then for all i = 1, 2, . . . , n,

E
[
u>i B

1/2(xk − x∗)
]

=

{
0 if λi = 0,

(1− ωλi)ku>i B1/2(x0 − x∗) if λi > 0.
(52)

Moreover,
‖E [xk − x∗] ‖2B ≤ ρk(ω)‖x0 − x∗‖2B, (53)

where the rate is given by

ρ(ω)
def
= max

i:λi>0
(1− ωλi)2. (54)

Note that all eigenvalues of W play a role, governing the convergence speeds of individual elements
of the transformed error vector. Under exactness, and relative to the particular solution x∗ = ΠB

L (x0),
the expected error E [xk − x∗] converges to zero at a linear rate. The proof of the theorem is provided
in Section 4.3.

Remark 3. Having established (48), perhaps the the most obvious way of analyzing the method is by
taking B-norms on both sides of identity (48). This way we obtain the estimate ‖E [xk+1 − x∗] ‖2B ≤
ρ̃(ω)‖E [xk − x∗] ‖2B, where ρ̃(ω) = ‖I − ωB−1E [Z]‖2B = σ2max(I − ωB−1/2E [Z]B−1/2), ‖M‖B

def
=

max{‖Mx‖B : ‖x‖B ≤ 1}, and σmax(·) denotes the largest singular value. This gives the inequality

‖E [xk − x∗] ‖2B ≤ ρ̃k(ω)‖x0 − x∗‖2B, (55)

which can be directly compared with (51). We now highlight two differences between these two bounds.
The first approach gives a more detailed, information, as the identity in (51) is an exact formula for the
norm of the expected error. Moreover, while in view of (54), we have ρ(ω) = maxi:λi>0(1 − ωλi)2, it
can be shown that ρ̃(ω) = maxi(1 − ωλi)2. The two bounds are identical if λmin > 0, but they differ
otherwise. In particular, as long as λmin = 0, we have ρ̃(ω) ≥ 1 for all ω, which means that the bound
(55) does not guarantee convergence.

The following result, characterizing convergence of the expected errors to zero, is a straightforward
corollary of Theorem 4.3.
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Corollary 4.4 (Necessary and sufficient conditions for convergence). Let Assumption 3.5 hold. Choose
any x0 ∈ Rn and let x∗ = ΠB

L (x0). If {xk} are the random iterates produced by Algorithm 1, then
the following statements are equivalent:

(i) |1− ωλi| < 1 for all i for which λi > 0

(ii) 0 < ω < 2/λmax

(iii) E
[
u>i B

1/2(xk − x∗)
]
→ 0 for all i

(iv) ‖E [xk − x∗] ‖2B → 0

4.3 Proof of Theorem 4.3

We first start with a lemma.

Lemma 4.5. Let Assumption 3.5 hold. Consider arbitrary x ∈ Rn and let x∗ = ΠB
L (x). If λi = 0,

then u>i B
1/2(x− x∗) = 0.

Proof. From (21) we see that x − x∗ = B−1A>w for some w ∈ Rm. Therefore, u>i B
1/2(x − x∗) =

u>i B
−1/2A>w. By Theorem 3.6, we have Range (ui : λi = 0) = Null

(
AB−1/2

)
, from which it follows

that u>i B
−1/2A = 0.

We now proceed with the proof of Theorem 4.3. The iteration of Algorithm 1 can be written in the
form

ek+1 = (I− ωB−1Zk)ek, (56)

where ek = xk−x∗. Multiplying both sides of this equation by B1/2 from the left, and taking expectation
conditional on ek, we obtain E

[
B1/2ek+1 | ek

]
= (I−ωB−1/2E [Z]B−1/2)B1/2ek. Taking expectations

on both sides and using the tower property, we get

E
[
B1/2ek+1

]
= E

[
E
[
B1/2ek+1 | ek

]]
= (I− ωB−1/2E [Z]B−1/2)E

[
B1/2ek

]
.

We now replace B−1/2E [Z]B−1/2 by its eigenvalue decomposition UΛU> (see (40)), multiply both
sides of the last inequality by U> from the left, and use linearity of expectation to obtain

E
[
U>B1/2ek+1

]
= (I− ωΛ)E

[
U>B1/2ek

]
.

Unrolling the recurrence, we get (49). When this is written coordinate-by-coordinate, (50) follows.
Identity (51) follows immediately by equating standard Euclidean norms of both sides of (49). If
x∗ = ΠB

L (x0), then from Lemma 4.5 we see that λi = 0 implies u>i B
1/2(x0 − x∗) = 0. Using this in
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(50) gives (52). Finally, inequality (53) follows from

‖E [xk − x∗] ‖2B
(51)
=

n∑
i=1

(1− ωλi)2k
(
u>i B

1/2(x0 − x∗)
)2

=
∑
i:λi>0

(1− ωλi)2k
(
u>i B

1/2(x0 − x∗)
)2

(54)

≤ ρk(ω)
∑
i:λi>0

(
u>i B

1/2(x0 − x∗)
)2

= ρk(ω)
∑
i:λi>0

(
u>i B

1/2(x0 − x∗)
)2

+ ρk(ω)
∑
i:λi=0

(
u>i B

1/2(x0 − x∗)
)2

= ρk(ω)
∑
i

(
u>i B

1/2(x0 − x∗)
)2

= ρk(ω)
∑
i

(x0 − x∗)>B1/2uiu
>
i B

1/2(x0 − x∗)

= ρk(ω)
∑
i

(x0 − x∗)>B1/2

(∑
i

uiu
>
i

)
B1/2(x0 − x∗)

= ρk(ω)‖x0 − x∗‖2B.

The last identity follows from the fact that
∑

i uiu
>
i = UU> = I.

4.4 Choice of the stepsize / relaxation parameter

We now consider the problem of choosing the stepsize (relaxation) parameter ω. In view of (53) and
(54), the optimal relaxation parameter is the one solving the following optimization problem:

min
ω∈R

{
ρ(ω) = max

i:λi>0
(1− ωλi)2

}
. (57)

In the next result we solve the above problem.

Theorem 4.6 (Stepsize). The objective of (57) is given by

ρ(ω) =


(1− ωλmax)2 if ω ≤ 0

(1− ωλ+min)2 if 0 ≤ ω ≤ ω∗

(1− ωλmax)2 if ω ≥ ω∗
, (58)

where ω∗
def
= 2/(λ+min + λmax). Moreover, ρ is decreasing on (−∞, ω∗] and increasing on [ω∗,+∞),

and hence the optimal solution of (57) is ω∗. Further, we have:

(i) If we choose ω = 1 (no over-relaxation), then

ρ(1) = (1− λ+min)2. (59)
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(ii) If we choose ω = 1/λmax (over-relaxation), then

ρ(1/λmax) =

(
1−

λ+min

λmax

)2
(41)
=

(
1− 1

ζ

)2

. (60)

(iii) If we choose ω = ω∗ (optimal over-relaxation), then the optimal rate is

ρ(ω∗) =

(
1−

2λ+min

λ+min + λmax

)2

=

(
1− 2

ζ + 1

)2

. (61)

Proof. Recall that λmax ≤ 1. Letting ρi(ω) = (1−ωλi)2, it is easy to see that ρ(ω) = max{ρj(ω), ρn(ω)},
where j is such that λj = λ+min. Note that ρj(ω) = ρn(ω) for ω ∈ {0, ω∗}. From this we deduce that
ρj ≥ ρn on (−∞, 0], ρj ≤ ρn on [0, ω∗], and ρj ≥ ρn on [ω∗,+∞), obtaining (58). We see that ρ is
decreasing on (−∞, ω∗], and increasing on [ω∗,+∞). The remaining results follow directly by plugging
specific values of ω into (58).

Theorem 4.6 can be intuitively understood in the following way. By design, we know that λmax ≤ 1.
If we do not have a better bound on the largest eigenvalue, we can simply choose ω = 1 to ensure
convergence. If we have a stronger bound available, say λmax ≤ U < 1, we can pick ω = 1/U ,
and the convergence rate will improve. The better the bound, the better the rate. However, using a
stepsize of the form ω = 1/U where U is not an upper bound on λmax is risky: if we underestimate the
eigenvalue by a factor of 2 or more, we can not guarantee convergence. Indeed, if U ≤ λmax/2, then
1/U ≥ 2/λmax and hence ρ(ω) ≥ 1. Beyond this point, information about λ+min is useful. However,
the best possible improvement beyond this only leads to a further factor of 2 speedup in terms of the
number of iterations. Therefore, one needs to be careful about underestimating λmax.

Example 2 (Random vectors). An important class of methods is obtained by restricting S to random
vectors. In this case,

λ+min + λmax ≤
n∑
i=1

λi = Trace
(
B−1/2E [Z]B−1/2

)
= E

[
Trace

(
B−1/2ZB−1/2

)]
= E

[
Trace

(
B−1Z

)]
= E

[
dim(Range

(
B−1Z

)
)
]

= 1,

and thus ω∗ = 2/(λ+min + λmax) ≥ 2. This means that in this case we can always safely choose the
relaxation parameter to be ω = 2. This results in faster rate than the choice ω = 1.

4.5 L2 convergence

In this section we establish a bound on E
[
‖xk − x∗‖2B

]
, i.e., we prove L2 convergence. This is a

stronger type of convergence than what we get by bounding ‖E [xk − x∗] ‖2B. Indeed, for any random
vector xk we have the inequality (see Lemma 4.1 in [17])

E
[
‖xk − x∗‖2B

]
= ‖E [xk − x∗]‖2B + E

[
‖xk − E [xk]‖2B

]
.

Hence, L2 convergence also implies that the quantity E
[
‖xk − E [xk]‖2B

]
—the total variance2 of xk—

converges to zero.

2Total variance of a random vector is the trace of its covariance matrix.
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We shall first establish an insightful lemma. The lemma connects two important measures of success:
‖xk − x∗‖2B and f(xk).

Lemma 4.7. Choose x0 ∈ Rn and let {xk}∞k=0 be the random iterates produced by Algorithm 1, with
an arbitrary relaxation parameter ω ∈ R. Let x∗ ∈ L. Then we have the identities ‖xk+1 − xk‖2B =
2ω2fSk(xk), and

‖xk+1 − x∗‖2B = ‖xk − x∗‖2B − 2ω(2− ω)fSk(xk). (62)

Moreover, E
[
‖xk+1 − xk‖2B

]
= 2ω2E [f(xk)], and

E
[
‖xk+1 − x∗‖2B

]
= E

[
‖xk − x∗‖2B

]
− 2ω(2− ω)E [f(xk)] . (63)

Proof. Recall that Algorithm 1 performs the update xk+1 = xk −ωB−1Zk(xk − x∗). From this we get

‖xk+1 − xk‖2B = ω2‖B−1Zk(xk − x∗)‖2B
(24)
= ω2(xk − x∗)>Zk(xk − x∗)

(26)
= 2ω2fSk(xk), (64)

In a similar vein,

‖xk+1 − x∗‖2B = ‖(I− ωB−1Zk)(xk − x∗)‖2B
= (xk − x∗)>(I− ωZkB−1)B(I− ωB−1Zk)(xk − x∗)
(24)
= (xk − x∗)>(B− ω(2− ω)Zk)(xk − x∗)
(26)
= ‖xk − x∗‖2B − 2ω(2− ω)fSk(xk),

establishing (62). Taking expectation in (64), we get

E
[
‖xk+1 − xk‖2B

]
= E

[
E
[
‖xk+1 − xk‖2B | xk

]]
= 2ω2E [E [fSk(xk) | xk]] = 2ω2E [f(xk)] .

Taking expectation in (62), we get E
[
‖xk+1 − x∗‖2B |xk

]
= ‖xk − x∗‖2B− 2ω(2−ω)f(xk). It remains

to take expectation again.

In our next result we utilize Lemma 4.7 to establish L2 convergence of the basic method.

Theorem 4.8 (L2 convergence). Let Assumption 3.5 hold and set x∗ = ΠB
L (x0). Let {xk} be the

random iterates produced by Algorithm 1, where the relaxation parameter satisfies 0 < ω < 2.

(i) For k ≥ 0 we have

(1− ω(2− ω)λmax)k‖x0 − x∗‖2B ≤ E
[
‖xk − x∗‖2B

]
≤ (1− ω(2− ω)λ+min)k‖x0 − x∗‖2B. (65)

(ii) The average iterate x̂k
def
= 1

k

∑k−1
t=0 xt for all k ≥ 1 satisfies

E
[
‖x̂k − x∗‖2B

]
≤

‖x0 − x∗‖2B
2ω(2− ω)λ+mink

. (66)

The best rate is achieved when ω = 1.

Proof. Let φk = E [f(xk)] and rk = E
[
‖xk − x∗‖2B

]
.
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(i) We have rk+1
(63)
= rk−2ω(2−ω)φk

(44)

≤ rk−ω(2−ω)λ+minrk, and rk+1
(63)
= rk−2ω(2−ω)φk

(43)

≥
rk − ω(2− ω)λmaxrk. Inequalities (65) follow from this by unrolling the recurrences.

(ii) By summing up the identities from (63), we get 2ω(2− ω)
∑k−1

t=0 φt = r0 − rk. Therefore,

E
[
‖x̂k − x∗‖2B

]
= E

∥∥∥∥∥1

k

k−1∑
t=0

(xt − x∗)

∥∥∥∥∥
2

B

 ≤ E

[
1

k

k−1∑
t=0

‖xt − x∗‖2B

]

=
1

k

k−1∑
t=0

rt
(44)

≤ 1

λ+mink

k−1∑
t=0

φt ≤
r0

2ω(2− ω)λ+mink
.

Not that in part (i) we give both an upper and a lower bound on E
[
‖xk − x∗‖2B

]
.

4.6 Convergence of expected function values

In this section we establish a linear convergence rate for the decay of E [f(xk)] to zero. We prove two
results, with different quantitative (speed) and qualitative (assumptions and insights gained) qualities.

The complexity in the first result (Theorem 4.9 ) is disappointing: it is (slightly) worse than quadratic
in the condition number ζ. However, we do not need to invoke Assumption 3.5 (exactness). In addition,
this result implies that the expected function values decay monotonically to zero.

Theorem 4.9 (Convergence of expected function values). Choose any x0 ∈ Rn and let {xk} be the
random iterates produced by Algorithm 1, where 0 ≤ ω ≤ 2/ζ (note that 2/ζ = 2λ+min/λmax ≤ 2).
Then

E [f(xk)] ≤ (1− 2λ+minω + λmaxω
2)kf(x0). (67)

The optimal rate is achieved for ω = 1/ζ, in which case we get the bound

E [f(xk)] ≤
(

1−
(λ+min)2

λmax

)k
f(x0).

Proof. Let S ∼ D be independent from S0,S1, . . . ,Sk and fix any x∗ ∈ L. Then we have

f(xk+1)
(32)
= ES∼D [fS(xk+1)]

(7)
= ES∼D [fS(xk − ω∇fSk(xk))]

(26)
=

1

2
ES∼D

[
(xk − x∗ − ω∇fSk(xk))

>Z(xk − x∗ − ω∇fSk(xk))
]

=
1

2
(xk − x∗ − ω∇fSk(xk))

>E [Z] (xk − x∗ − ω∇fSk(xk))

=
1

2
(xk − x∗)>E [Z] (xk − x∗)− ω(∇fSk(xk))

>E [Z] (xk − x∗) +
ω2

2
‖∇fSk(xk)‖2E[Z]

(34)
= f(xk)− ω(∇fSk(xk))

>E [Z] (xk − x∗) +
ω2

2
‖∇fSk(xk)‖2E[Z].
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Taking expectations, conditioned on xk (that is, the expectation is with respect to Sk), we can
further write

E [f(xk+1) | xk] = f(xk)− ωαk + ω2βk, (68)

where

αk
def
= (ESk∼D [∇fSk(xk)])

>E [Z] (xk − x∗), βk
def
=

1

2
ESk∼D

[
‖∇fSk(xk)‖2E[Z]

]
. (69)

We shall now bound αk from below and βk from above in terms of f(xk). Using the inequality
E [Z] � λmaxB (this follows from B−1/2E [Z]B−1/2 � λmaxI), we get

βk
(69)

≤ λmax

2
ESk∼D

[
‖∇fSk(xk)‖2B

] (30)
= λmaxESk∼D [fSk(xk)]

(32)
= λmaxf(xk).

On the other hand,

αk
(69)+(35)

= (xk − x∗)>E [Z]B−1E [Z] (xk − x∗)
(35)
= ‖∇f(xk)‖2B

(42)

≥ 2λ+minf(xk).

Substituting the bounds for αk and βk into (68), we get E [f(xk+1) | xk] ≤ (1 − 2λ+minω +
λmaxω

2)f(xk). Taking expectations again gives

E [f(xk+1)] = E [E [f(xk+1) | xk]] ≤ (1− 2λ+minω + λmaxω
2)E [f(xk)] .

It remains to unroll the recurrence.

We now present an alternative convergence result (Theorem 4.10), one in which we do not bound
the decrease in terms of the initial function value, f(x0), but in terms of a somewhat larger quantity.
This allows us to provide a better convergence rate. For this result to hold, however, we need to invoke
Assumption 3.5. Note also that this result does not imply that the expected function values decay
monotonically.

Theorem 4.10 (Convergence of expected function values). Choose x0 ∈ Rn, and let {xk}∞k=0 be the
random iterates produced by Algorithm 1, where the relaxation parameter satisfies 0 < ω < 2.

(i) Let x∗ ∈ L. The average iterate x̂k
def
= 1

k

∑k−1
t=0 xt for all k ≥ 1 satisfies

E [f(x̂k)] ≤
‖x0 − x∗‖2B
2ω(2− ω)k

. (70)

(ii) Now let Assumption 3.5 hold. For x∗ = ΠB
L (x0) and k ≥ 0 we have

E [f(xk)] ≤
(
1− ω(2− ω)λ+min

)k λmax‖x0 − x∗‖2B
2

. (71)

The best rate is achieved when ω = 1.

Proof. (i) Let φk = E [f(xk)] and rk = E
[
‖xk − x∗‖2B

]
. By summing up the identities from (63),

we get 2ω(2− ω)
∑k−1

t=0 φt = r0 − rk. Therefore, using Jensen’s inequality,

E [f(x̂k)] ≤ E

[
1

k

k−1∑
t=0

f(xt)

]
=

1

k

k−1∑
t=0

φt =
r0 − rk

2ω(2− ω)k
≤ r0

2ω(2− ω)k
.
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(ii) Combining inequality (43) with Theorem 4.8, we get

E [f(xk)] ≤
λmax

2
E
[
‖xk − x∗‖2B

] (65)

≤
(
1− ω(2− ω)λ+min

)k λmax‖x0 − x∗‖2B
2

.

Remark 4. Theorems 4.9 and 4.10 are complementary. In particular, the complexity result given in
Theorem 4.9 (for the last iterate) holds under weaker assumptions. Moreover, Theorem 4.9 implies
monotonicity of expected function values. On the other hand, the rate is substantially better in Theo-
rem 4.10. Also, Theorem 4.10 applies to a wider range of stepsizes.

It is also possible to obtain other convergence results as a corollary. For instance, one can get a
linear rate for the decay of the norms of the gradients as a corollary of Theorems 4.9 and 4.10 using the
upper bound in Lemma 4.2.

5 Parallel and Accelerated Methods

In this section we propose and analyze parallel and accelerated variants of Algorithm 1.

5.1 Parallel method

The parallel method (12) is formalized in this section as Algorithm 2.

Algorithm 2 Parallel Method

1: Parameters: distribution D from which to sample matrices; positive definite matrix B ∈ Rn×n;
stepsize/relaxation parameter ω ∈ R; parallelism parameter τ

2: Choose x0 ∈ Rn . Initialization
3: for k = 0, 1, 2, . . . do
4: for i = 1, 2, . . . , τ do
5: Draw Ski ∼ D
6: Set zk+1,i = xk − ωB−1A>Ski(S>kiAB−1A>Ski)

†S>ki(Axk − b)
7: Set xk+1 = 1

τ

∑τ
i=1 zk+1,i . Average the results

For brevity, we only prove L2 convergence results. However, various other results can be obtained as
well, as was the case for the basic method, such as convergence of expected iterates, expected function
values and average iterates.

Theorem 5.1. Let Assumption 3.5 hold and set x∗ = ΠB
L (x0). Let {xk}∞k=0 be the random iterates

produced by Algorithm 2, where the relaxation parameter satisfies 0 < ω < 2/ξ(τ), and ξ(τ)
def
=

1
τ +

(
1− 1

τ

)
λmax. Then

E
[
‖xk+1 − x∗‖2B

]
≤ ρ(ω, τ) · E

[
‖xk − x∗‖2B

]
,

and

E [f(xk)] ≤ ρ(ω, τ)k
λmax

2
‖x0 − x∗‖2B,
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where ρ(ω, τ)
def
= 1− ω [2− ωξ(τ)]λ+min. For any fixed τ ≥ 1, the optimal stepsize choice is ω(τ)

def
=

1/ξ(τ) and the associated optimal rate is

ρ(ω(τ), τ) = 1−
λ+min

1
τ +

(
1− 1

τ

)
λmax

. (72)

Proof. Recall that Algorithm 2 performs the update xk+1 = xk − ωB−1Z̃k(xk − x∗), where Z̃k
def
=

1
τ

∑τ
i=1 Zki. We have

E
[
‖xk+1 − x∗‖2B | xk

]
= E

[
‖(I− ωB−1Z̃k)(xk − x∗)‖2B

]
= E

[
(xk − x∗)>(I− ωZ̃kB−1)B(I− ωB−1Z̃k)(xk − x∗)

]
(24)
= E

[
(xk − x∗)>(B− 2ωZ̃k + ω2Z̃kB

−1Z̃k(xk − x∗)
]

= (xk − x∗)>
(
B− 2ωE [Z] + ω2E

[
Z̃kB

−1Z̃k

])
(xk − x∗). (73)

Next, we can write

Z̃kB
−1Z̃k =

1

τ2

 τ∑
i=1

ZkiB
−1Zki +

∑
(i,j) : i 6=j

ZkiB
−1Zkj

 .

Since ZkiB
−1Zki = Zki, and because Zki and Zkj are independent for i 6= j, we can further write

E
[
Z̃kB

−1Z̃k

]
=

1

τ2
(
τE [Z] + (τ2 − τ)E [Z]B−1E [Z]

)
�
(

1

τ
+

(
1− 1

τ

)
λmax

)
E [Z] , (74)

where we have used the estimate E [Z]B−1E [Z] � λmaxE [Z], which follows from the bound W2 ≤
λmaxW. Plugging (74) into (73), and noting that ‖xk − x∗‖2E[Z] = 2f(xk), we obtain:

E
[
‖xk+1 − x∗‖2B | xk

]
≤ ‖xk − x∗‖2B −

[
2ω − ω2

(
1

τ
+

(
1− 1

τ

)
λmax

)]
2f(xk) (75)

(44)

≤ ρ(ω, τ)‖xk − x∗‖2B. (76)

The inequality involving f is shown in the same way as in Theorem 4.10.

As τ →∞, we have ρ(ω, τ)→ 1− ω(2− ωλmax)λ+min. The optimal stepsize is ω = 1/λmax, which
leads to the optimal rate

ρ(1/λmax,+∞) = 1−
λ+min

λmax
= 1− 1

ζ
.

In this asymptotic regime, we again recover linear dependence on the condition number.
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5.2 Accelerated method

In this section we develop an accelerated variant of Algorithm 1. Recall that a single iteration of
Algorithm 1 takes the form xk+1 = φω(xk,Sk), where

φω(x,S)
def
= x− ωB−1A>S(S>AB−1A>S)†S>(Ax− b). (77)

We have seen that the convergence rate progressively improves as we increase ω from 1 to ω∗, which
is the optimal choice. In particular, with ω = 1 we have the complexity Õ(1/λ+min), while choosing
ω = 1/λmax = 1/λmax or ω = ω∗ leads to the improved complexity Õ(λmax/λ

+
min) = Õ(ζ).

In order to obtain further acceleration, we suggest to perform an update step in which xk+1 depends
on both xk and xk−1. In particular, we take two dependent steps of Algorithm 1, one from xk and one
from xk−1, and take an affine combination of the results. This, the process is started with x0, x1 ∈ Rn,
and for k ≥ 1 involves an iteration of the form

xk+1 = γφω(xk,Sk) + (1− γ)φω(xk−1,Sk−1), (78)

where the matrices {Sk} are independent samples from D, and γ ∈ R is an acceleration parameter.
Note that by choosing γ = 1 (no acceleration), we recover Algorithm 1. This method is formalized as
Algorithm 3.

Algorithm 3 Accelerated Method

1: Parameters: distribution D from which to sample matrices; positive definite matrix B ∈ Rn×n;
stepsize/relaxation parameter ω > 0; acceleration parameter γ > 0

2: Choose x0, x1 ∈ Rn such that x0 − x1 ∈ Range
(
B−1A>

)
(for instance, choose x0 = x1)

3: Draw S0 ∼ D
4: Set z0 = φω(x0,S0)
5: for k = 1, 2, . . . do
6: Draw a fresh sample Sk ∼ D
7: Set zk = φω(xk,Sk)
8: Set xk+1 = γzk + (1− γ)zk−1 . Main update step

9: Output xk

As we shall see, by a proper combination of overrelaxation (choice of ω) with acceleration (choice
of γ), Algorithm 3 enjoys the accelerated complexity of Õ(

√
ζ).

We start with a lemma describing the evolution of the expected iterates.

Lemma 5.2 (Expected iterates). Let x∗ be any solution of Ax = b and let rk
def
= E [xk − x∗]. Then

for all k we have the recursion

rk+1 = γ(I− ωB−1E [Z])rk + (1− γ)(I− ωB−1E [Z])rk−1. (79)

Proof. Taking expectation on both sides of (78), we get

E [xk+1] = γE [φω(xk,Sk)] + (1− γ)E [φω(xk−1,Sk−1)] .

After subtracting x∗ from both sides, using (77), and replacing b by Ax∗, we get

rk+1 = γE
[
(I− ωB−1Zk)(xk − x∗)

]
+ (1− γ)E

[
(I− ωB−1Zk−1)(xk−1 − x∗)

]
,
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where Zk = A>Sk(S
>
kAB−1A>Sk)

†S>kA. We now use the tower property and linearity of expectation,
we finally obtain:

rk+1 = γE
[
E
[
(I− ωB−1Zk)(xk − x∗) | xk

]]
+ (1− γ)E

[
E
[
(I− ωB−1Zk−1)(xk−1 − x∗) | xk−1

]]
= γE

[
(I− ωB−1E [Z])(xk − x∗)

]
+ (1− γ)E

[
(I− ωB−1E [Z])(xk−1 − x∗)

]
= γ(I− ωB−1E [Z])rk + (1− γ)(I− ωB−1E [Z])rk−1.

We can now state our main complexity result. Note that the optimal choice of parameters, covered
in case (i), leads to a rate which depends on the square root of the condition number.

Theorem 5.3 (Complexity of Algorithm 3). Let Assumption 3.5 be satisfied and let {xk}∞k=0 be the
sequence of random iterates produced by Algorithm 3, started with x0, x1 ∈ Rn satisfying the relation
x0 − x1 ∈ Range

(
B−1A>

)
, with relaxation parameter 0 < ω ≤ 1/λmax and acceleration parameter

γ = 2/(1 +
√
µ), where µ ∈ (0, ωλ+min). Let x∗ = ΠB

L (x0). Then there exists a constant C > 0, such
that for all k ≥ 2 we have

‖E [xk − x∗] ‖2B ≤ (1−√µ)2kC. (80)

(i) If we choose ω = 1/λmax (overrelaxation), then we can pick µ = 0.99/ζ (recall that ζ =
λmax/λ

+
min is the condition number), which leads to the rate

‖E [xk − x∗]‖2B ≤
(

1−
√

0.99λ+min/λmax

)2k

C.

(ii) If we choose ω = 1 (no overrelaxation), then we can pick µ = 0.99λ+min, which leads to the rate

‖E [xk − x∗] ‖2B ≤
(

1−
√

0.99λ+min

)2k

C.

Proof. Multiplying the identity in Lemma 5.2 from the left by B1/2, we obtain

B1/2rk+1 = γ
(
I− ωB−1/2E [Z]B−1/2

)
B1/2rk + (1− γ)

(
I− ωB−1/2E [Z]B−1/2

)
B1/2rk−1.

Plugging the eigenvalue decomposition UΛU> of B−1/2E [Z]B−1/2 into the above, and multiplying
both sides from the left by U>, we get

U>B1/2rk+1 = γ (I− ωΛ)U>B1/2rk + (1− γ)(I− ωΛ)U>B1/2rk−1. (81)

Now if we denote wk = U>B1/2rk ∈ Rn, (81) becomes separable in the coordinates of w:

wk+1 = γ(I− ωΛ)wk + (1− γ)(I− ωΛ)wk−1. (82)

Writing this coordinate-by-coordinate (with wik indicating the ith coordinate of wk), we get

wik+1 = γ (1− ωλi)wik + (1− γ)(1− ωλi)wik−1, i = 1, 2, . . . , n. (83)

We now fix i and analyze recursion (83). We can use Lemma C.1 with E = γ(1 − ωλi) and
F = (1 − γ)(1 − ωλi). Now recall that 0 ≤ λi ≤ 1 for all i, and λ+min > 0. Since we assume that
0 < ω < 1/λmax, we know that 0 < ωλi ≤ 1 for all i for which λi > 0, and ωλi = 0 for those i for
which λi = 0. Therefore, it is enough to consider the following 3 cases:
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(1) ωλi = 1. In this case we see from (83) that wik = 0 for all k ≥ 2.

(2) ωλi = 0. Since, by assumption, x0 − x1 ∈ Range
(
B−1A>

)
, it follows that ΠB

L (x0) = ΠB
L (x1).

All our arguments up to this point hold for arbitrary x∗ ∈ L. However, we now choose x∗ =
ΠB
L (x0) = ΠB

L (x1). Invoking Lemma 4.5 twice, once for x = x0 and then for x = x1, we conclude
that wi0 = u>i B

1/2(x0 − x∗) = 0 and wi1 = u>i B
1/2(x1 − x∗) = 0. In view of recursion (83), we

conclude that ωik = 0 for all k ≥ 0.

(3) 0 < ωλi < 1. In this case we have

E2 + 4F = γ2(1− ωλi)2 + 4(1− γ)(1− ωλi) = (1− ωλi)
(
(2− γ)2 − ωλiγ2

)
= (1− ωλi)

((
2
√
µ

1 +
√
µ

)2

− ωλi
(

2

1 +
√
µ

)2
)

= 4
(1− ωλi)
(1 +

√
µ)2

(µ− ωλi) < 0,

where the last inequality follows from the assumption µ < ωλ+min. Therefore, we can apply
Lemma C.1, using which we can deduce the bound

wik = 2Mk (C0 cos(θk) + C1 sin(θk)) ≤ 2

(√
E2

4
+
−E2 − 4F

4

)k
(|C0|+ |C1|)

= 2
(√
−F
)k

(|C0|+ |C1|) = 2

(√
1−√µ
1 +
√
µ

(1− ωλi)

)k
(|C0|+ |C1|)

≤ 2

(√
1−√µ
1 +
√
µ

(1−√µ)(1 +
√
µ)

)k
(|C0|+ |C1|) = 2 (1−√µ)k (|C0|+ |C1|).

As |C0|+ |C1| depends on i, we shall write Ci = |C0|+ |C1|.

Putting everything together, for all k ≥ 2 we have

‖rk‖2B = ‖E [xk − x∗] ‖2B = ‖U>B1/2E [xk − x∗] ‖2 = ‖wk‖2 =
n∑
i=1

(wik)
2

(84)

≤
∑
i:λi=0

(wi0)
2︸ ︷︷ ︸

=0

+
∑
i:λi>0

4(1−√µ)2kCi = 4(1−√µ)2k
∑
i:λi>0

Ci,

finishing the proof.

Note that we do not have a result on L2 convergence. We have tried to obtain an accelerated rate
in the L2 sense, but were not successful. We conjecture that such a result can be obtained.

6 Conclusion

We have developed a generic scheme for reformulating any linear system as a stochastic problem,
which has several seemingly different but nevertheless equivalent interpretations: stochastic optimization
problem, stochastic linear system, stochastic fixed point problem, and probabilistic intersection problem.
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While stochastic optimization is a broadly studied field with rich history, the concepts of stochastic linear
system, stochastic fixed point problem and probablistic intersection appear to be new.

We give sufficient, and necessary and sufficient conditions for the reformulation to be exact, i.e.,
for the solution set of the reformulation to exactly match the solution set of the linear system. To the
bets of our knowledge, this is is first systematic study of stochastic reformulations of linear systems.
Further, we have developed three algorithms—basic, parallel and accelerated methods—to solve the
stochastic reformulations. We have studied the convergence of expected iterates, L2 convergence,
converge of a Cesaro average of all iterates, and convergence of f . Our methods recover an array
of existing randomized algorithms for solving linear systems in special cases, including several variants
of the randomized Kaczmarz method [60], randomized coordinate descent [24], and all the methods
developed in [17, 18].

Our work can be extended in several ways. One of the most promising of these is stochastic
preconditioning, which refers to the generic problem of fine-tuning the formulations (by designing the
distributions D and matrix B) to the structure of A. We conjecture that specific highly efficient
methods can be designed in this way. Accelerated convergence in the L2 sense remains an important
open problem.

Last but not least, we hope that this work provides bridge across several communities: numerical
linear algebra, stochastic optimization, machine learning, computational geometry, fixed point theory,
applied mathematics and probability theory. We hope that our work may inspire further progress at the
boundaries of these fields.
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A Stochastic proximal point method

As claimed in the introduction, here we show (see Theorem A.3 below) that the stochastic proximal
point method (9) is equivalent to stochastic gradient descent (7). First, we state a couple of lemmas,
starting with the Sherman-Morrison-Woodbury matrix inversion formula [56, 63].

Lemma A.1 (Sherman-Morrison-Woodbury). Let M ∈ Rn×n, C ∈ Rn×q, N ∈ Rq×q and D ∈ Rq×n,
with M and N being invertible. Then

(M + CND)−1 = M−1 −M−1C
(
N−1 + DM−1C

)−1
DM−1.

The next result, Lemma A.2, is trivially true if M is positive definite. Indeed, in that case,
(M†)1/2M(M†)1/2 = I, and the statement follows. However, in general, (M†)1/2M(M†)1/2 is not
equal to the identity; the lemma therefore says that the expression on the left hand side still behaves as
if it was.

Lemma A.2. Let M be a symmetric positive semidefinite matrix. Then for all µ > 0 we have the
identity:

(M†)1/2
(
I +

1

µ
(M†)1/2M(M†)1/2

)−1
(M†)1/2 =

µ

1 + µ
M†. (84)

Proof. Let M = UDU> be the eigenvalue decomposition of M. Then M† = UD†U>, and it is easy
to show that identity (84) holds if it holds for M being diagonal. If M is diagonal, then matrices on
both sides of (84) are diagonal, which means we can compare the individual diagonal entries. It is easy
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to see that if Mii = 0, then the ith diagonal element of the matrices on both sides of (84) is zero. If
Mii > 0, then ith diagonal element of the matrix on the left hand side of (84) is

M
−1/2
ii

(
1 +

1

µ

)−1
M
−1/2
ii = M−1ii

(
1 +

1

µ

)−1
=

µ

1 + µ
M−1ii .

We are now ready to prove the equivalence result.

Theorem A.3. If 0 < ω ≤ 1, then Algorithms (9) and (7) are equivalent. That is, for every x ∈ Rn,
µ ≥ 0 and matrix S with m rows we havea

x− ω∇fS(x) = arg min
z∈Rn

fS(z) +
1− ω

2ω
‖z − x‖2B.

aNote that the identity trivially holds for ω = 0 if we understand the function on the right hand side in the limit
sense: ω → 0 from the right. That is, x = argminz ‖z − x‖2B.

Proof. The identity holds3 for ω = 1. This follows (31) in view of the fact that fS is nonnegative. If
0 < ω < 1, then under the substitution µ = ω−1

ω , the statement is equivalent to requiring that

x− 1

1 + µ
∇fS(x) = arg min

z∈Rn
fS(z) +

µ

2
‖z − x‖2B (85)

holds for any µ > 0.
The minimizer of the stochastic fixed point iteration (right hand side of (85)) can be computed by

setting the gradient to zero: 0 = A>H(Az−b)+µB(z−x), whence z∗ = (µB+A>HA)−1(A>Hb+
µBx). In view of the formula for the stochastic gradient (27), our goal is therefore to show that

x− 1

1 + µ
B−1A>H(Ax− b) = (µB + A>HA)−1(A>Hb+ µBx). (86)

By comparing the terms involving x and those that do not in (86), it is sufficient to show that

µ(µB + A>HA)−1B = I− 1

1 + µ
B−1A>HA, (87)

and

(µB + A>HA)−1A>Hb =
1

1 + µ
B−1A>Hb. (88)

Let us now compute the inverse matrix in the expression defining z∗. First, we have

(µB + A>HA)−1 = B−1/2
(
µI + B−1/2A>HAB−1/2

)−1
B−1/2. (89)

Let K be the symmetric square root of the symmetric positive semidefinite matrix (S>AB−1A>S)†.
This means that we can write H = SK2S>. We now compute the inverse (89) by applying Lemma A.1
with M = µI, C = B−1/2A>SK, N = I (of appropriate size) and D = C>:(
µI + B−1/2A>HAB−1/2

)−1
=

I

µ
− 1

µ2
B−1/2A>SK

(
I +

1

µ
KS>AB−1A>SK

)−1
KS>AB−1/2.

3In this case we interpret this identity as meaning that the vector on the left hand side is a minimizer of the function
on the right hand side (as there may be multiple minimizers).
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In view of (89), pre and post-multiplying both sides of the last identity by B−1/2, and subsequently
applying Lemma A.2 with M = S>AB−1A>S yields(

µB + A>HA
)−1

=
B−1

µ
− 1

µ2
B−1A>SK

(
I +

1

µ
KS>AB−1A>SK

)−1
KS>AB−1

(84)
=

B−1

µ
− 1

µ2
B−1A>S

(
µK2

1 + µ

)
S>AB−1

=
B−1

µ
− B−1A>HAB−1

µ(1 + µ)
.

Given the above formula for the inverse, identity (87) follows immediately. Identity (88) follows using
the facts that b = Ax∗ and (B−1Z)2 = B−1Z, where Z = A>HA.

B Smallest nonzero eigenvalue

We are using the following inequality in the proof of Theorem 4.8.

Lemma B.1. If Assumption 3.5 holds, then for all x ∈ Range
(
B−1/2A>

)
we have:

x>B−1/2E [Z]B−1/2x ≥ λ+min(B−1/2E [Z]B−1/2)x>x (90)

Proof. It is known that for any matrix M ∈ Rm×n, the inequality x>M>Mx ≥ λ+min(M>M)x>x
holds for all x ∈ Range

(
M>

)
. Applying this with M = (E [Z])1/2B−1/2, we see that (90) holds for all

x ∈ Range
(
B−1/2(E [Z])1/2

)
. However,

Range
(
B−1/2(E [Z])1/2

)
= Range

(
B−1/2(E [Z])1/2(B−1/2(E [Z])1/2)>

)
= Range

(
B−1/2E [Z]B−1/2

)
= Range

(
B−1/2A>

)
,

where the last identity follows by combining Assumption 3.5 and Theorem 3.6.

C Linear difference equations

The proof of Theorem 5.3 uses the following standard linear recurrence relations result [15, 13].

Lemma C.1. Consider the following linear homogeneous recurrence relation of degree 2 with constant
coefficients: ξk+1 = Eξk + Fξk−1, with ξ0, ξ1 ∈ R.

(i) ξk → 0 if and only if both roots of the characteristic polynomial, r2−Er2−F , lie strictly inside
the unit complex circle.

(ii) Assume that E2 + 4F < 0, i.e., that both roots are complex (the roots are α + iβ and α −
iβ, where α = E/2 and β =

√
−E2 − 4F/2). Then there are (complex) constants C0, C1,

depending on the initial conditions ξ0, ξ1, such that ξk = 2Mk (C0 cos(θk) + C1 sin(θk)) , where
M =

√
α2 + β2, and θ is such that α = M cos(θ) and β = M sin(θ).
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D Notation glossary

The Basics
A, b m× n matrix and m× 1 vector defining the system Ax = b
L {x : Ax = b} (solution set of the linear system)
B n× n symmetric positive definite matrix

〈x, y〉B x>By (B-inner product)

‖x‖B
√
〈x, x〉B (B-norm)

M† Moore-Penrose pseudoinverse of matrix M
S a random real matrix with m rows
D distribution from which matrix S is drawn (S ∼ D)
H S(S>AB−1A>S)†S> (22)
Z A>HA (23)

Range (M) range space of matrix M
Null (M) null space of matrix M

Trace (M) trace of matrix M
Prob(·) probability of an event

E [·] expectation

Projections
ΠB
L (x) projection of x onto L in the B-norm (21)
M†B B−1M>(MB−1M>)† (B-pseudoinverse of M) (20)
B−1Z projection matrix, in the B-norm, onto Range

(
B−1A>S

)
(27)

Optimization
X set of minimizers of f Thm 3.4
x∗ a point in L

fS, ∇fS, ∇2fS stochastic function, its gradient and Hessian (25)–(30)
LS {x : S>Ax = S>b} (set of minimizers of fS) Lem 3.1
f E [fS] (32), Lem 3.3
∇f gradient of f with respect to the B-inner product
∇2f B−1E [Z] (Hessian of f in the B-inner product)

Eigenvalues

W B−1/2E [Z]B−1/2 (psd matrix with the same spectrum as ∇2f)
λ1, . . . , λn eigenvalues of W

Λ Diag (λ1, . . . , λn) (diagonal matrix of eigenvalues)
U [u1, . . . , un] (eigenvectors of W)

UΛU> eigenvalue decomposition of W (40)
λmax, λ

+
min largest and smallest nonzero eigenvalues of W

ζ λmax/λ
+
min (condition number of W) (14), (41)

Algorithms
ω relaxation parameter / stepsize Alg 1–3
τ parallelism parameter Alg 2
γ acceleration parameter Alg 3

Table 2: Frequently used notation.
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