Иван Дмитриевич Ремизов

Обзор научных результатов для участия в конкурсе ППС

З мая 2023

Историческая справка

Математическая генеалогия: И.Д.Ремизов - представитель Московской школы теории функций, ученик О.Г.Смолянова

Стрелками показаны цепочки «Учитель-Ученик» на уровне научного руковолства по кандилатским диссертациям:

Вклад в науку

И.Д. Ремизов входит в мировой топ-5 специалистов по приближённому вычислению экспонент от дифференциальных операторов с переменными коэффициентами при помощи теоремы Чернова. Всего в мире по этим вопросам насчитывается примерно 20 экспертов. И.Д. Ремизову в этой теме принадлежат:

- Новые концепции (касание по Чернову, квазифейнмановские формулы, аппроксимационное подпространство, быстро и сверхбыстро сходящиеся черновские аппроксимации, построенные на операторе сдвига функции Чернова и др.)
- Фундаментальные результаты (примеры сходящихся с наперёд заданной скоростью черновских аппроксимаций, теорема об оценке сверху на скорость сходимости черновских аппроксимаций совместно с О.Е.Галкиным, универсальный метод аппроксимации групп унитарных операторов, черновские аппроксимации резольвент)
- Много новых формул, явно выражающих сколь угодно точные аппроксимации к экспоненте от дифференциального оператора через его переменные коэффициенты - в разных пространствах

$$
\blacktriangleright \text{ Мменная формула } R(t) = e^{ia(S(t)-1)}
$$

• Численные эксперименты (совместно со студентами)

Подробнее о тематике

Иерархия тематик: математика \supset функциональный анализ \supset однопараметрические полугруппы операторов ⊃ черновские аппроксимации C_0 -полугрупп.

Как определить экспоненту? Если $t > 0$, то можно использовать определение с помощью ряда $e^{tL} = \sum_{k=0}^{\infty} \frac{(tL)^k}{k!}$ в случае, если:

- \blacktriangleright L вещественное или комплексное число
- \blacktriangleright \blacktriangle вещественная или комплексная матрица
- \blacktriangleright L ограниченный линейный оператор в вещественном или комплексном банаховом пространстве

В случае, если L - неограниченный линейный оператор в банаховом пространстве \mathcal{F} , то такая экспонента существует уже не для любого L, и ряд для определения экспоненты использовать уже нельзя. Под экспонентой e^{tL} в этом случае понимают C_0 -полугруппу (C_0 -semigroup) с генератором L, т.е. такое отображение $V: [0, +\infty) \to \mathscr{L}(\mathcal{F})$, что при каждом $t \geq 0$ оператор $V(t)$ отображает $\mathcal F$ в $\mathcal F$ линейно и непрерывно, для каждого $f \in \mathcal{F}$ верно $V(0)f = f$, $V(t_1 + t_2)f = V(t_1)V(t_2)f$ для всех $t_1, t_2 \in [0, +\infty)$, функция $t \mapsto V(t)f$ непрерывна и $V'(0) = L$. Тогда пишут $V(t) = e^{tL}$. $4/13$

Applications of semigroups

This is the contents of the famous book K.J.Engel, R.Nagel. One-parameter semigroups for linear evolution equations (Springer, 2000):

We will discuss only few of applications of semigroups, and will select only some of those that your lecturer uses or created.

Theorem (summary of well known facts). Suppose that $(A, D(A))$ generates a \mathcal{C}_0 -semigroup $(e^{t\boldsymbol{A}})_{t\geq 0}$ in Banach space \mathcal{F} . Then: 1. For each $u_0 \in D(A)$ Cauchy problem

$$
\begin{cases}\nU'(t) = AU(t), t \ge 0 \\
U(0) = u_0\n\end{cases}
$$
\n(1)

has a solution $U\in C^1([0,+\infty),\mathcal{F})$ which is unique in $C^1([0,+\infty),\mathcal{F})$ and is given by the formula $U(t) = e^{tA}u_0$. 2. For each $u_0 \in D(A)$, $f \in C([0,+\infty), \mathcal{F})$ Cauchy problem

$$
\begin{cases}\nU'(t) = AU(t) + f(t), t \ge 0 \\
U(0) = u_0\n\end{cases}
$$

has a solution $U\in C^1([0,+\infty),\mathcal{F})$ which is unique in $C^1([0,+\infty),\mathcal{F})$ and is given as $U(t) = e^{tA}u_0 + \int_0^t e^{(t-s)A}f(s)ds$. **3.** For each $u_0 \in \mathcal{F}$ Cauchy problem (1) in the integral form $U(t)=u_0+A\int_0^tU(s)ds$ has a solution $U\in\mathcal{C}([0,+\infty),\mathcal{F})$ which is unique in $C([0,+\infty),\mathcal{F})$ and is given as $U(t)=e^{t\mathcal{A}}u_0.$ This solution is called the mild solution of (1) and exists for all $u_0 \in \mathcal{F}$. **4.** If $\|e^{tA}\| \leq M e^{wt}$, then for each $\lambda \in \mathbb{C}$ satisfying $Re \lambda > w$ and for each $g \in \mathcal{F}$ equation $\lambda f - Af = g$ has a solution $f \in D(A)$, which is unique in $D(A)$ and is given by the formula $f = R(\lambda, A)g = \int_0^{+\infty} e^{-\lambda t} e^{tA} g dt$.

Example 1. Consider

 $\mathcal{F} = \mathcal{U} \mathcal{C}_b(\mathbb{R}) = \{ f \in \mathbb{R}^{\mathbb{R}} | f \text{ is uniformly continuous and bounded} \}$

which is a Banach space with the so-called «uniform norm» $\|f\|=\sup_{\mathsf{x}\in\mathbb{R}} |f(\mathsf{x})|$. Suppose that functions $a,b,c\in \mathit{UC}_b(\mathbb{R})$ are some known parameters, and define operator \boldsymbol{A} by equality

$$
(Af)(x) = a(x)f''(x) + b(x)f'(x) + c(x)f(x)
$$
 for all $x \in \mathbb{R}, f \in D(A)$.

Let $(A, D(A))$ be closed linear operator with $D(A)$ satisfying

$$
UC_b^2(R) = \{f \in UC_b(R)|f', f'' \in UC_b(R)\} \subset D(A) \subset UC_b(R).
$$

Suppose that $(A, D(A))$ generates a \mathcal{C}_0 -semigroup $(e^{tA})_{t\geq 0}$. Then Cauchy problem for second order linear parabolic PDE for $u: [0, +\infty) \times \mathbb{R} \to \mathbb{R}$

$$
\begin{cases} u_t(t,x) = a(x)u_{xx}(t,x) + b(x)u_x(t,x) + c(x)u(t,x), t \ge 0, x \in \mathbb{R} \\ u(0,x) = u_0(x), x \in \mathbb{R} \end{cases}
$$

has solution $u(t,x) = (e^{tA}u_0)(x)$, $U(t) = u(t, \cdot) = [x \mapsto u(t, x)].$ Moreover second order linear ODE for $f: \mathbb{R} \to \mathbb{R}$

$$
a(x)f''(x) + b(x)f'(x) + (c(x) - \lambda)f(x) = -g(x), x \in \mathbb{R}
$$

has solution $f(x) = \int_0^{+\infty} e^{-\lambda t} (e^{tA}g)(x) dt$.

Example 2. Consider dimension $d \in \mathbb{N}$, $x = (x_1, x_2, \dots, x_d) \in \mathbb{R}^d$ and

 $\mathcal{F} = \mathcal{U} \mathcal{C}_b(\mathbb{R}^d) = \{ f \in \mathbb{R}^{\mathbb{R}^d} | f \text{ is uniformly continuous and bounded} \}$

which is a Banach space with the so-called «uniform norm» $\|f\|=\sup_{\mathsf{x}\in\mathbb{R}^d}|f(\mathsf{x})|$. Suppose that functions $a_{ij},b_i,c\in \mathit{UC}_b(\mathbb{R}^d)$ are some k nown parameters, and define operator A by equality

$$
(Af)(x) = \sum_{i,j=1}^d a_{ij}(x) f_{x_ix_j}(x) + \sum_{i=1}^d b_i(x) f_{x_i}(x) + c(x) f(x)
$$
 for all $x \in \mathbb{R}^d$.

Suppose that $(A, D(A))$ generates a \mathcal{C}_0 -semigroup $(e^{tA})_{t\geq 0}$. Then Cauchy problem for **second order linear parabolic PDE**, $u\colon [0,+\infty)\times \mathbb{R}^d \to \mathbb{R}$

$$
\begin{cases}\n u_t(t,x) = \sum_{i,j=1}^d a_{ij}(x) u_{x_ix_j}(t,x) + \sum_{i=1}^d b_i(x) u_{x_i}(t,x) + c(x) u(t,x), t \ge 0, x \in \mathbb{R}^d \\
 u(0,x) = u_0(x), x \in \mathbb{R}^d\n\end{cases}
$$

has solution $u(t,x) = (e^{tA}u_0)(x)$, $U(t) = u(t, \cdot) = [x \mapsto u(t, x)].$ Moreover second order linear elliptic PDE for $f: \mathbb{R}^d \to \mathbb{R}$

$$
\sum_{i,j=1}^d a_{ij}(x) f_{x_ix_j}(x) + \sum_{i=1}^d b_i(x) f_{x_i}(x) + (c(x) - \lambda) f(x) = -g(x), x \in \mathbb{R}^d
$$

has solution $f(x) = \int_0^{+\infty} e^{-\lambda t} (e^{tA}g)(x) dt$.

Chernoff approximations of C_0 -semigroups

Definition.¹ Operator-valued function G is called Chernoff-tangent to the operator L iff all conditions are met:

(CT0)Let us use symbol $\mathscr{L}(\mathcal{F})$ to denote the set of all linear bounded operators in a Banach space F. Let the operator $L: \mathcal{F} \supset D(L) \to \mathcal{F}$ be linear and closed.

(CT1) G is defined on [0, $+\infty$), takes values in $\mathscr{L}(F)$, and the function $t \longmapsto G(t)f$ is continuous for each $f \in \mathcal{F}$. (CT2) $G(0) = I$, i.e. $G(0)f = f$ for each $f \in \mathcal{F}$.

(CT3) There exists such a dense subspace $\mathcal{D} \subset \mathcal{F}$ that for each $f \in \mathcal{D}$ there exists a limit

$$
G'(0)f=\lim_{t\to 0}\frac{G(t)f-f}{t}.
$$

(CT4) The closure of the operator $(G'(0), \mathcal{D})$ is equal to $(L, D(L))$. **Remark.** Informal meaning: $G(t) = 1 + tL + o(t)$ as $t \to 0$.

 11 .D. Remizov. Quasi-Feynman formulas – a method of obtaining the evolution operator for the Schrodinger equation// Journal of Functional Analysis, 270:12 (2016)

Chernoff approximations of C_0 -semigroups

Remark. In the definition of the Chernoff tangency the family $(G(t))_{t>0}$ usually does not have a semigroup composition property, which in fact is a reason why we often can find a simple formula for $G(t)$. Each C_0 -semigroup $(e^{tL})_{t\geq 0}$ is Chernoff-tangent to its generator L, but if L is a differential operator with variable coefficients then usually we do not have a simple formula for e^{tL} . We should not expect to have such a formula beacause the Cauchy problem for parabolic equation $[u_t'(t) = Lu(t), u(0) = u_0]$ has the solution $u(t) = e^{tL}u_0$, so finding a formula for e^{tL} is equivalent to finding a formula that solves this Cauchy problem for each $u_0 \in \mathcal{F}$, which is usually not an easy task. However, we can obtain approximations to $e^{tL}\mathbf{\bm{\mathsf{\mathcal{u}}}}_0$ via the Chernoff theorem.

Remark. Chernoff's theorem says that if e^{tL} exists, G is Chernoff-taangent to L, and $||G(t)||$ behaves similar to $||e^{tL}||$ then $G(t/n)^n \to e^{tL}$ as $n \to \infty$. It is a natural fact because for the trivial case $\mathbb{R} = \mathcal{F} = \mathscr{L}(\mathcal{F})$ we have $G: [0, +\infty) \to \mathbb{R}$, and condition

$$
G(t/n)^n = (1 + (tL/n) + o(1/n))^n \rightarrow e^{tL} \text{ as } n \rightarrow \infty
$$

follows from the "second remarkable limit theorem".

Chernoff approximations of C_0 -semigroups

Theorem (P. R. CHERNOFF, 1968). Let F and $\mathscr{L}(F)$ be as before. Suppose that the operator $L: \mathcal{F} \supset Dom(L) \rightarrow \mathcal{F}$ is linear and closed, and function G takes values in $\mathscr{L}(\mathcal{F})$. Suppose that these assumptions are fulfilled: (E) There exists a C_0 -semigroup $(e^{tL})_{t\geq 0}$ with the generator $(L, D(L))$. (CT) G is Chernoff-tangent to $(L, D(L))$. (N) There exists such $\omega \in \mathbb{R}$, that $\|\hat{G}(t)\| \leq e^{\omega t}$ for all $t \geq 0$. Then for each $f\in\mathcal{F}$ we have $(G(t/n))^n f\to e^{tL}f$ as $n\to\infty$ with respect to norm in F locally uniformly in t, i.e. for each $T > 0$

$$
\lim_{n\to\infty}\sup_{t\in[0,T]}\left\|e^{tL}f-(G(t/n))^n f\right\|=0.\tag{C}
$$

Remark. Expressions $(G(t/n))^n$ are called Chernoff approximations to the semigroup e^{tL} . If condition (C) holds then G is called: a Chernoff function for operator L and (sometimes) a Chernoff function for the semigroup $(e^{tL})_{t\geq 0}$, also in that case family $(G(t))_{t\geq 0}$ is called Chernoff-equivalent to the semigroup $(e^{tL})_{t\geq 0}$.

Concrete example of Chernoff approximation

Theorem.² Suppose that $d \in \mathbb{N}$ is an arbitrary number, and index *j* runs from 1 to d . Let $e_j \in \mathbb{R}^d$ be a constant d -dimensional vector with 1 at position j and 0 at other $d-1$ positions. Suppose that functions $\mathsf{a}_j,\mathsf{b}_j,\mathsf{c}\colon\mathbb{R}^d\to\mathbb{R}$ are uniformly continuous and bounded, moreover a_j are positive and bounded from zero. For each $x\in\mathbb{R}^d$, $t\geq 0$, $f\in \mathit{UC}_b(\mathbb{R}^d)$ and $\varphi \in \mathcal{C}^\infty_b(\mathbb{R}^d)$ define

$$
(S(t)f)(x) = \frac{1}{4d} \sum_{j=1}^{d} \left(f\left(x + 2\sqrt{a_j(x)td}e_j\right) + f\left(x - 2\sqrt{a_j(x)td}e_j\right) \right) + \frac{1}{2}f(x + 2tb(x)) + tc(x)f(x),
$$

$$
(H\varphi)(x) = \sum_{j=1}^{d} a_j(x)\varphi_{x_jx_j}(x) + \sum_{j=1}^{d} b_j(x)\varphi_{x_j}(x) + c(x)\varphi(x).
$$

Then e^{tH} exists, and for each $f\in \mathit{UC}_b(\mathbb R^d)$ we have a convergence $\lim_{n\to\infty}\left(\left(S(t/n)\right)^nf\right)(x)=(e^{tH}f)(x)\in\mathbb{R}$

uniformly in $x\in\mathbb{R}^d$ and locally uniformly in $t\geq 0.$

² I.D.Remizov. Solution-giving formula to Cauchy problem for multidimensional parabolic equation with variable coefficients// Journal of Mathematical Physics, vol 60 (2019)

Дальнейшая информация

Профиль И.Д. Ремизова на Общероссийском математическом портале https://www.mathnet.ru/php/person.phtml?option_lang=rus& personid=76353 был недавно обновлён и содержит следующие разделы:

- Основные темы научной работы
- ▶ Полученные научные результаты (по состоянию на март 2023)
- \blacktriangleright Темы в работе (по состоянию на март 2023)
- Образование
- \blacktriangleright Работа
- Организационная работа
- \blacktriangleright Преподавание
- Награды и премии \blacktriangleright
- \blacktriangleright Personalia
- Список публикаций
- \blacktriangleright Доклады и лекции в базе данных Math-Net. Ru