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1. INTRODUCTION

An important problem of the theory of operator algebras is a geometric characterization of state
spaces of operator algebras. In 1989 Friedman and Russo published a paper [4] related to this problem,
in which they introduced strongly facially symmetric spaces, largely for the purpose of obtaining a
geometric characterization of the predual spaces of JBW*-triples admitting an algebraic structure.
Many of the properties required in these characterizations are natural assumptions for state spaces of
physical systems. Such spaces are regarded as a geometric model for states of quantum mechanics
(see [3–5]).

The principal examples of complex strongly facially symmetric spaces are preduals of complex JBW*-
triples, in particular, the preduals of von Neumann algebras (see [5]). In these cases, as shown
in [5], geometric tripotents correspond to tripotents in a JBW*-triple and to partial isometries in a
von Neumann algebra. In [2], the relationship between M-orthogonality and algebraic orthogonality
in JB*-triples was studied. A purely geometric description of the algebraic concept of tripotents was
obtained in [6]. Characterizations of real operator algebras with a strongly facially symmetric spaces
were obtained in [1, 7, 8].

This paper is devoted to the study of the relationship between M-orthogonality and orthogonality in
the sense of SFS-spaces in dual space. A geometric characterization of geometric tripotents in reflexive
complex SFS-spaces is given.

2. STRONGLY FACIALLY SYMMETRIC SPACES

Let Z be a real or complex normed space. We say that elements f, g ∈ Z are orthogonal and write
f � g if

||f + g|| = ||f − g|| = ||f ||+ ||g||.
We say subsets S, T ⊂ Z are orthogonal and write S � T , if f � g for all (f, g) ∈ S × T . For a subset S
of Z, we put

S� = {f ∈ Z : f � g∀g ∈ S};
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the set S� is called the orthogonal complement of S. A convex subset F of the unit ball Z1 = {f ∈ Z :
||f || ≤ 1} is called a face if the relation λg + (1− λ)h ∈ F , where g, h ∈ Z1, λ ∈ (0, 1), implies g, h ∈ F .
A face F of the unit ball is said to be norm exposed if Fu = {f ∈ Z1 : u(f) = 1}, for some u ∈ Z∗ with
||u|| = 1. An element u ∈ Z∗ is called a projective unit if ||u|| = 1 and u(g) = 0 for all g ∈ F �

u .
A norm exposed face Fu in Z1 is called a symmetric face if there exists a linear isometry Su from Z to

Z such that S2
u = I whose fixed point set coincides with the topological direct sum of the closure spFu

of the linear hull of the face Fu and its orthogonal complement F �
u , i.e., with spFu ⊕ F �

u .
A space Z is said weakly facially symmetric (WFS) if each norm exposed face in Z1 is symmetric.
For each symmetric face Fu, contractive projections Pk(Fu), k = 0, 1, 2 on Z are defined as follows.

First, P1(Fu) = (I −Su)/2 is the projection on the eigenspace corresponding to the eigenvalue −1 of the
symmetry Su. Next, P2(Fu) and P0(Fu) are defined as projections of Z onto spFu and F �

u , respectively;
i.e., P2(Fu) + P0(Fu) = (I + Su)/2. The projections Pk(Fu) are called geometric Peirce projections.

A projective unit u ∈ Z∗ is called geometric tripotent if Fu is a symmetric face and S∗
uu = u

for the symmetry Su corresponding to Fu. By GT and SF we denote the sets of all geometric
tripotents and symmetric faces, respectively; the correspondence GT � u 	→ Fu ∈ SF is one-to-one [4,
Proposition 1.6]. For each geometric tripotent u from the dual WFS space Z, we denote the geometric
Peirce projections by Pk(u) = Pk(Fu), k = 0, 1, 2.

We set

U = Z∗, U1 = Z∗
1 , Zk(u) = Zk(Fu) = Pk(u)Z, Uk(u) = Pk(Fu) = Pk(u)

∗Z∗.

The geometric Peirce decomposition

Z = Z2(u) + Z1(u) + Z0(u), U = U2(u) + U1(u) + U0(u)

holds. Geometric tripotents u and v are said to be orthogonal if u ∈ U0(v) (which implies v ∈ U0(u))
or, equivalently, u± v ∈ GT (see [3, Lemma 2.5]). More generally, elements a and b of U are said to
be orthogonal, denoted a � b, if one of them belongs to U2(u) and the other belongs to U0(u) for some
geometric tripotent u.

A WFS space Z is said to be strongly facially symmetric (SFS) if for each norm exposed face Fu of
Z1 and each y ∈ U satisfying the conditions ||y|| = 1 and Fu ⊂ Fy , we have S∗

uy = y, where Su is the
symmetry corresponding Fu.

Instructive examples of complex strongly facially symmetric spaces are Hilbert spaces, the preduals
of von Neumann algebras or JBW*-algebras, and more generally, the preduals of complex JBW*-triples.
Moreover, geometric tripotents correspond to nonzero partial isometries of von Neumann algebras and
tripotents in a JBW*-triples (see [5]).

Remark. Let u, v ∈ GT and u � v. Then for any f ∈ Fu+v we have

〈f, u〉 ≥ 0, 〈f, v〉 ≥ 0. (1)

Two elements a and b of a normed vector space E are said to be M-orthogonal (see [2]), denoted a�b,
if

||a± b|| = max{||a||, ||b||}.

For a subset H of the normed space E, the M-orthogonal complement (briefly the M-complement) H�

of H is defined by

H� = {a ∈ E : a�b,∀b ∈ H}.

For a singleton set {a} we write a� instead of {a}�.
For each element a ∈ E of norm one, the tangent disc Sa at a is defined by

Sa = {b ∈ E : ||a+ λb|| = 1,∀λ ∈ C, |λ| ≤ 1}.

The relations presented in the following lemma will be useful in subsequent considerations. They
were proved in [2, Lemma 2.11].

Lemma 1. Let a be an element of norm one in a complex normed space E. Then
(i) a� ∩E1 = {b ∈ E : ||a+ tb|| = 1, ∀t ∈ [−1; 1]};
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(ii) ia� ∩ a� ∩ E1 ⊆
{√

2b ∈ E : ||a+ zb|| = 1, ∀z ∈ C, |z| ≤ 1
}

;

(iii) ia� ∩ E1 = (ia)� ∩ E1.

From (i) it is easy to see that Sa ⊆ ia� ∩ a� ∩ E1. From (ii) we have

Sa ⊆ ia� ∩ a� ∩ E1 ⊆
√
2Sa. (2)

3. CHARACTERIZATIONS OF GEOMETRIC TRIPOTENTS

Let Z be a strongly facially symmetric space and let U = Z∗. For a subset G of U we set

G� = {x ∈ U : x � y,∀y ∈ G}
and call G� the orthogonal complement G.

Lemma 2. Let Z be a SFS-space and x be an element in U . Then the orthogonal complement
x� of x is contained in the M-orthogonal complement x� of x, i.e.

x� ⊂ x�. (3)

The proof of Lemma 2 follows from [3, Lemma 2.1(i)].
Lemma 3. Let Z be a SFS-space and u ∈ GT . Then u� ∩ U1 = u� ∩ U1.
Proof. Let u ∈ GT and y ∈ u� ∩ U1. By lemma 2, y ∈ u� ∩ U1.
Let us suppose that y ∈ u� ∩ U1. By the definition of the set u� it follows that

||u± y|| = max{||u||, ||y||} = 1.

Then for every f ∈ Fu we have

|1± 〈f, y〉| = |〈f, u〉 ± 〈f, y〉| = |〈f, u± y〉| ≤ ||u± y|| = 1.

But this inequality is valid only for 〈f, y〉 = 0. Therefore, Fu ⊂ Fu±y . Then by [3, Lemma 2.8] we obtain
that

u± y = u+ P0(u)
∗(u± y) = u+ P0(u)

∗(u)u± P0(u)
∗(y) = u± P0(u)

∗y.

Therefore, y ∈ U0(u). Hence, y ∈ u� ∩ U1. Thus, if u is a geometric tripotent, then u� ∩ U1 = u� ∩ U1.
The proof is complete. �

The next result is directly follows from Lemmas 2 and 3.
Theorem 1. Let Z be a SFS-space and let G be non-empty subset of GT . Then the sets G� ∩U1

and G� ∩ U1 coincide.
Theorem 2. Let Z be a reflexive complex SFS-space and let u be an element in U of norm

one. Then the following conditions are equivalent: (a) u ∈ GT ; (b) u� ∩ U1 = u� ∩ U1; (c)
u� ∩ U1 = iu� ∩ U1; (d) Su = u� ∩ U1.

Proof. An implication (a) =⇒ (b) have already proved in Lemma 3.
(a) =⇒ (c). Take an arbitrary tripotent u. Since u� is a complex subspace of U , then u� = (iu)�.

Therefore, by Lemma 1 (iii), and it follows from (b) that

iu� ∩ U1 = (iu)� ∩ U1 = (iu)� ∩ U1 = u� ∩ U1 = u� ∩ U1.

(a) =⇒ (d). Let u be a tripotent and y be any element of u� ∩ U1. Since u� is a complex subspace
of U , it follows from (b) that, for all z ∈ C, |z| ≤ 1, zy ∈ u� ∩ U1 = u� ∩ U1. Therefore, ||u+ zy|| =
max{||u||, ||zy||} = 1, that is, y lies in Su.

For the converse inclusion, combine (b) and (c) with the relations (2) to obtain

Su ⊆ u� ∩ iu� ∩ U1 = u� ∩ u� ∩ U1 = u� ∩ U1 = u� ∩ U1.

Suppose, that u ∈ U is not a geometric tripotent. By the spectral theorem for reflexive SFS-spaces
(see [3, Theorem 1]), every element u ∈ U is uniquely represented in the next form

u = λ1u1 + λ2u2 + ...+ λnun,
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where λ1 > λ2 > ... > λn > 0, uk ∈ GT and uk � um, (k �= m,k,m = 1, 2, ..., n, n ∈ N). Then, by [3,
Lemma 2.1 (i)], it follows that

1 = ||u|| = ||λ1u1 + λ2u2 + ...+ λnun|| = max{||λ1u1||, ||λ2u2||, ..., ||λnun||}
= max{|λ1|||u1||, |λ2|||u2||, ..., |λn|||un||} = max{λ1, λ2, ..., λn}.

Therefore, λ1 = 1.
In order to disprove (c), we need to find an element y which lies in u� ∩ U1 but not in iu�. Similarly,

we show hat there exists an element h which lies in u� ∩ U1 and Su but not in u�.
(c) =⇒ (a). Let u� ∩ U1 = iu� ∩ U1 and y =

√
1− λ2

2iu2 + ...+
√

1− λ2
niun. Again, by [3,

Lemma 2.1 (i)], we have

||y|| = ||
√

1− λ2
2iu2 + ...+

√
1− λ2

niun|| = max{
√

1− λ2
2, ...,

√
1− λ2

n} =
√

1− λ2
n < 1,

||u± y|| = ||u1 + (λ2 ±
√

1− λ2
2i)u2 + ...+ (λn ±

√
1− λ2

ni)un||

= max{1, |λ2 ±
√

1− λ2
2i|, ..., |λn ±

√
1− λ2

ni|} = 1.

Therefore,

max{||u||, ||y||} = max{1,
√

1− λ2
n} = 1 = ||u± y||.

This shows that u and y are M-orthogonal.
On the other hand, by [3, Lemma 2.1 (i)], we have

max{||u||, ||iy||} = max{||u||, ||y||} = max{1,
√

1− λ2
n} = 1,

||u− iy|| = ||u1 + (λ2 +
√

1− λ2
2)u2 + ...+ (λn +

√
1− λ2

n)un||

= max{1, λ2 +
√

1− λ2
2, ..., λn +

√
1− λ2

n} > 1.

Hence, u and ±iy are not M-orthogonal, and y is not contained in iu�.
(b) =⇒ (a). Let u� ∩U1 = u� ∩U1 and h = (1− λ2)u2 + ...+ (1− λn)un. Again, by [3, Lemma 2.1

(i)], we have

||h|| = ||(1 − λ2)u2 + ...+ (1− λn)un|| = max{1− λ2, ..., 1 − λn} = 1− λn < 1,

||u+ h|| = ||u1 + u2 + ...+ un|| = max{||u1||, ..., ||un||} = 1,

||u− h|| = ||u1 + (2λ2 − 1)u2 + ...+ (2λn − 1)un|| = max{1, |2λ2 − 1|, ..., |2λn − 1|} = 1.

Therefore,

max{||u||, ||h||} = max{1, 1 − λn} = 1 = ||u± h||.

This shows that u and h are M-orthogonal, i.e. h ∈ u� ∩ U1.
Let us suppose that u � h, h = (1− λ2)u2 + ...+ (1− λn)un. By [3, Lemma 2.1(ii)], Fu ⊂ Fu+h.

Then for any f ∈ Fu we have 1 + 〈f, h〉 = 〈f, u+ h〉 = 1. Hence, 〈f, h〉 = 0. On the other hand

1 = 〈f, u+ h〉 = 〈f, u1 + u2 + ...+ un〉,
i.e. Fu ⊂ Fu1+u2+...+un. By (1), for each f ∈ Fu we have

〈f, h〉 = (1− λ2)〈f, u2〉+ ...+ (1− λn)〈f, un〉 �= 0.

Therefore h does not contained in u�.
(d) =⇒ (a). Let Su = u� ∩ U1 and h = (1− λ2)u2 + ...+ (1− λn)un. For any z ∈ C, |z| ≤ 1, by [3,

Lemma 2.1 (i)], we have

||u+ zh|| = ||u1 + (λ2 + (1− λ2)z)u2 + ...+ (λn + (1− λn)z)un||
= max{1, |λ2 + (1− λ2)z|, ..., |λn + (1− λn)z|} = 1.

Therefore h ∈ Su. But h does not contained in u�. The proof is complete. �
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For a norm-one element u in U we consider the sets X1(u) and X2(u) defined by

X1(u) = {y ∈ U : ∃t > 0, ||u± ty|| = 1},
X2(u) = {y ∈ U : ∀λ ∈ C, ||u± λy|| = max{1, ||λy||}}.

Theorem 3. Let Z be a reflexive complex SFS-space and let u be an element in U of norm one.
Then u is a geometric tripotent if and only if X1(u) and X2(u) coincide.

Proof. Suppose that u ∈ GT . Observe that the inclusion X2(u) ⊂ X1(u) is immediate from the
definition of these sets. Hence we need only to show that X1(u) ⊂ X2(u). Consider an element y in
X1(u), i.e. there exists t > 0 with ||u± ty|| = 1. Then

2||ty|| = ||u+ ty − (u− ty)|| ≤ ||u+ ty||+ ||u− ty|| = 2.

Hence ty lies in U1. Therefore max{||u||, ||ty||} = 1 and ty lies in u�. From this and theorem 2 (b), it
follows that ty ∈ u� ∩ U1 = u� ∩ U1. The relation (3) implies that, for all λ ∈ C,

λy =
λ

t
ty ∈ sp(u� ∩ U1) = u� ⊂ u�.

Therefore, y lies in X2(u), as required.

Suppose that X1(u) = X2(u), and consider an element y in u� ∩ U1. From Lemma 1 (i) we see that
u� ∩ U1 ⊂ X1(u), and we have that y lies in X2(u). In particular,

||u± iy|| = max{1, ||iy||} ≤ 1.

This shows that iy and −iy are elements of u� ∩ U1. Hence y lies in iu� ∩ U1. We conclude that
u� ∩ U1 ⊂ iu� ∩ U1. The reverse inclusion is obtained from similar arguments. By Theorem 2 (c), u is
a geometric tripotent. The proof is complete. �
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