Characterizations of Geometric Tripotents in Reflexive Complex SFS-Spaces

J. Seypullaev1*

(Submitted by E. K. Lipachev)

1Department of Mathematics, Karakalpak State University, Nukus, 230113 Uzbekistan Received August 4, 2019; revised August 16, 2019; accepted August 20, 2019

Abstract—This paper is devoted to study of the relationship between M-orthogonality and orthogonality in the sense of SFS-spaces in dual space. A geometric characterization of geometric tripotents in reflexive complex SFS-spaces is given.

DOI: 10.1134/S1995080219120126

Keywords and phrases: *strongly facially symmetric space, norm exposed face, geometric tripotent, geometric Peirce projections.*

1. INTRODUCTION

An important problem of the theory of operator algebras is a geometric characterization of state spaces of operator algebras. In 1989 Friedman and Russo published a paper [4] related to this problem, in which they introduced strongly facially symmetric spaces, largely for the purpose of obtaining a geometric characterization of the predual spaces of JBW*-triples admitting an algebraic structure. Many of the properties required in these characterizations are natural assumptions for state spaces of physical systems. Such spaces are regarded as a geometric model for states of quantum mechanics $($ see [$3-5$]).

The principal examples of complex strongly facially symmetric spaces are preduals of complex JBW* triples, in particular, the preduals of von Neumann algebras (see [5]). In these cases, as shown in [5], geometric tripotents correspond to tripotents in a JBW*-triple and to partial isometries in a von Neumann algebra. In [2], the relationship between M-orthogonality and algebraic orthogonality in JB*-triples was studied. A purely geometric description of the algebraic concept of tripotents was obtained in [6]. Characterizations of real operator algebras with a strongly facially symmetric spaces were obtained in [1, 7, 8].

This paper is devoted to the study of the relationship between M-orthogonality and orthogonality in the sense of SFS-spaces in dual space. A geometric characterization of geometric tripotents in reflexive complex SFS-spaces is given.

2. STRONGLY FACIALLY SYMMETRIC SPACES

Let Z be a real or complex normed space. We say that elements $f, g \in Z$ are orthogonal and write $f \diamond g$ if

$$
||f + g|| = ||f - g|| = ||f|| + ||g||.
$$

We say subsets $S, T \subset Z$ are orthogonal and write $S \circ T$, if $f \circ q$ for all $(f, q) \in S \times T$. For a subset S of Z , we put

$$
S^{\diamond} = \{ f \in Z : f \diamond g \forall g \in S \};
$$

^{*} E-mail: jumabek81@mail.ru

2112 SEYPULLAEV

the set S^{\diamond} is called the orthogonal complement of S. A convex subset F of the unit ball $Z_1 = \{f \in Z : S \}$ $||f|| \le 1$ is called a face if the relation $\lambda g + (1 - \lambda)h \in F$, where $g, h \in Z_1, \lambda \in (0, 1)$, implies $g, h \in F$. A face F of the unit ball is said to be norm exposed if $F_u = \{f \in Z_1 : u(f) = 1\}$, for some $u \in Z^*$ with $||u|| = 1$. An element $u \in Z^*$ is called a projective unit if $||u|| = 1$ and $u(g) = 0$ for all $g \in F_u^{\diamond}$.

A norm exposed face F_u in Z_1 is called a symmetric face if there exists a linear isometry S_u from Z to Z such that $S_u^2 = I$ whose fixed point set coincides with the topological direct sum of the closure $\overline{\text{sp}}F_u$ of the linear hull of the face F_u and its orthogonal complement F^\diamond_u , i.e., with $\overline{\mathrm{sp}} F_u \oplus F^\diamond_u$.

A space Z is said weakly facially symmetric (WFS) if each norm exposed face in Z_1 is symmetric.

For each symmetric face F_u , contractive projections $P_k(F_u)$, $k = 0, 1, 2$ on Z are defined as follows. First, $P_1(F_u)=(I - S_u)/2$ is the projection on the eigenspace corresponding to the eigenvalue −1 of the symmetry S_u . Next, $P_2(F_u)$ and $P_0(F_u)$ are defined as projections of Z onto $\overline{\text{sp}}F_u$ and F_u^{\diamond} , respectively; i.e., $P_2(F_u) + P_0(F_u) = (I + S_u)/2$. The projections $P_k(F_u)$ are called geometric Peirce projections.

A projective unit $u \in Z^*$ is called geometric tripotent if F_u is a symmetric face and $S^*_u u = u$ for the symmetry S_u corresponding to F_u . By \mathcal{GT} and \mathcal{SF} we denote the sets of all geometric tripotents and symmetric faces, respectively; the correspondence $\mathcal{GT}\ni u\mapsto F_u\in\mathcal{SF}$ is one-to-one [4, Proposition 1.6]. For each geometric tripotent u from the dual WFS space Z , we denote the geometric Peirce projections by $P_k(u) = P_k(F_u)$, $k = 0, 1, 2$.

We set

$$
U = Z^*, \quad U_1 = Z_1^*, \quad Z_k(u) = Z_k(F_u) = P_k(u)Z, \quad U_k(u) = P_k(F_u) = P_k(u)^* Z^*.
$$

The geometric Peirce decomposition

$$
Z = Z_2(u) + Z_1(u) + Z_0(u), \quad U = U_2(u) + U_1(u) + U_0(u)
$$

holds. Geometric tripotents u and v are said to be orthogonal if $u \in U_0(v)$ (which implies $v \in U_0(u)$) or, equivalently, $u \pm v \in \mathcal{GT}$ (see [3, Lemma 2.5]). More generally, elements a and b of U are said to be orthogonal, denoted $a \circ b$, if one of them belongs to $U_2(u)$ and the other belongs to $U_0(u)$ for some geometric tripotent u.

A WFS space Z is said to be strongly facially symmetric (SFS) if for each norm exposed face F_u of Z₁ and each $y \in U$ satisfying the conditions $||y|| = 1$ and $F_u \subset F_y$, we have $S^*_u y = y$, where S_u is the symmetry corresponding F_u .

Instructive examples of complex strongly facially symmetric spaces are Hilbert spaces, the preduals of von Neumann algebras or JBW*-algebras, and more generally, the preduals of complex JBW*-triples. Moreover, geometric tripotents correspond to nonzero partial isometries of von Neumann algebras and tripotents in a JBW*-triples (see [5]).

Remark. Let $u, v \in \mathcal{GT}$ and $u \diamond v$. Then for any $f \in F_{u+v}$ we have

$$
\langle f, u \rangle \ge 0, \quad \langle f, v \rangle \ge 0. \tag{1}
$$

Two elements a and b of a normed vector space E are said to be M-orthogonal (see [2]), denoted $a\Box b,$ if

$$
||a \pm b|| = \max{||a||, ||b||}.
$$

For a subset H of the normed space $E,$ the M-orthogonal complement (briefly the M-complement) H^\square of H is defined by

$$
H^{\square} = \{ a \in E : a \square b, \forall b \in H \}.
$$

For a singleton set $\{a\}$ we write a^\square instead of $\{a\}^\square$.

For each element $a \in E$ of norm one, the tangent disc S_a at a is defined by

 $S_a = \{b \in E : ||a + \lambda b|| = 1, \forall \lambda \in \mathbb{C}, |\lambda| \leq 1\}.$

The relations presented in the following lemma will be useful in subsequent considerations. They were proved in [2, Lemma 2.11].

Lemma 1. *Let* a *be an element of norm one in a complex normed space* E*. Then* (i) $a^{\square} \cap E_1 = \{b \in E : ||a + tb|| = 1, \forall t \in [-1, 1]\};$

 $(ii) \ ia^{\Box} \cap a^{\Box} \cap E_1 \subseteq \left\{ \sqrt{2}b \in E : ||a + zb|| = 1, \ \forall z \in \mathbb{C}, |z| \leq 1 \right\};$ $(iii) \; ia^{\square} \cap E_1 = (ia)^{\square} \cap E_1.$ From (i) it is easy to see that $S_a \subseteq ia^\square \cap a^\square \cap E_1.$ From (ii) we have

$$
S_a \subseteq ia^{\square} \cap a^{\square} \cap E_1 \subseteq \sqrt{2}S_a. \tag{2}
$$

3. CHARACTERIZATIONS OF GEOMETRIC TRIPOTENTS

Let Z be a strongly facially symmetric space and let $U = Z^*$. For a subset G of U we set

 $G^{\diamond} = \{x \in U : x \diamond y, \forall y \in G\}$

and call G^{\diamond} the orthogonal complement G .

Lemma 2. *Let* Z *be a SFS-space and* x *be an element in* U*. Then the orthogonal complement* x^{\diamond} of x is contained in the M-orthogonal complement x^{\Box} of x, i.e.

$$
x^{\diamond} \subset x^{\square}.\tag{3}
$$

The proof of Lemma 2 follows from [3, Lemma 2.1(i)].

Lemma 3. Let Z be a SFS-space and $u \in \mathcal{GT}$. Then $u^{\square} \cap U_1 = u^{\diamond} \cap U_1$.

Proof. Let $u \in \mathcal{GT}$ and $y \in u^{\circ} \cap U_1$. By lemma $2, y \in u^{\square} \cap U_1$.

Let us suppose that $y\in u^{\square}\cap U_1.$ By the definition of the set u^{\square} it follows that

$$
||u \pm y|| = \max{||u||, ||y||} = 1.
$$

Then for every $f \in F_u$ we have

$$
|1 \pm \langle f, y \rangle| = |\langle f, u \rangle \pm \langle f, y \rangle| = |\langle f, u \pm y \rangle| \le ||u \pm y|| = 1.
$$

But this inequality is valid only for $\langle f, y \rangle = 0$. Therefore, $F_u \subset F_{u \pm v}$. Then by [3, Lemma 2.8] we obtain that

$$
u \pm y = u + P_0(u)^*(u \pm y) = u + P_0(u)^*(u)u \pm P_0(u)^*(y) = u \pm P_0(u)^*y.
$$

Therefore, $y \in U_0(u)$. Hence, $y \in u^{\diamond} \cap U_1$. Thus, if u is a geometric tripotent, then $u^{\Box} \cap U_1 = u^{\diamond} \cap U_1$. The proof is complete.

The next result is directly follows from Lemmas 2 and 3.

Theorem 1. Let Z be a SFS-space and let G be non-empty subset of GT . Then the sets $G^{\Box}\cap U_1$ and $G^{\diamond} \cap U_1$ coincide.

Theorem 2. *Let* Z *be a reflexive complex SFS-space and let* u *be an element in* U *of norm one.* Then the following conditions are equivalent: (a) $u \in \mathcal{GT}$; (b) $u^{\square} \cap U_1 = u^{\diamond} \cap U_1$; (c) $u^{\square} \cap U_1 = i u^{\square} \cap U_1;$ (d) $S_u = u^{\diamond} \cap U_1.$

Proof. An implication $(a) \implies (b)$ have already proved in Lemma 3.

 $(a) \Longrightarrow (c)$. Take an arbitrary tripotent u. Since u^{\diamond} is a complex subspace of U, then $u^{\diamond} = (iu)^{\diamond}$. Therefore, by Lemma 1 (iii), and it follows from (b) that

$$
iu^{\square} \cap U_1 = (iu)^{\square} \cap U_1 = (iu)^{\diamond} \cap U_1 = u^{\diamond} \cap U_1 = u^{\square} \cap U_1.
$$

 $(a) \Longrightarrow (d)$. Let u be a tripotent and y be any element of $u^{\circ} \cap U_1$. Since u° is a complex subspace of U, it follows from (b) that, for all $z \in \mathbb{C}$, $|z| \leq 1$, $zy \in u^{\circ} \cap U_1 = u^{\square} \cap U_1$. Therefore, $||u + zy|| =$ $\max\{||u||, ||zy||\} = 1$, that is, y lies in S_u .

For the converse inclusion, combine (b) and (c) with the relations (2) to obtain

$$
S_u \subseteq u^{\square} \cap i u^{\square} \cap U_1 = u^{\square} \cap u^{\square} \cap U_1 = u^{\square} \cap U_1 = u^{\diamond} \cap U_1.
$$

Suppose, that $u \in U$ is not a geometric tripotent. By the spectral theorem for reflexive SFS-spaces (see [3, Theorem 1]), every element $u \in U$ is uniquely represented in the next form

$$
u = \lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n,
$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 12 2019

where $\lambda_1 > \lambda_2 > ... > \lambda_n > 0$, $u_k \in \mathcal{GT}$ and $u_k \diamond u_m$, $(k \neq m, k, m = 1, 2, ..., n, n \in \mathbb{N})$. Then, by [3, Lemma 2.1 (i)], it follows that

$$
1 = ||u|| = ||\lambda_1 u_1 + \lambda_2 u_2 + \dots + \lambda_n u_n|| = \max\{||\lambda_1 u_1||, ||\lambda_2 u_2||, ..., ||\lambda_n u_n||\}
$$

= max{ $|\lambda_1|| ||u_1||, |\lambda_2|| ||u_2||, ..., |\lambda_n|| ||u_n||$ } = max{ $\lambda_1, \lambda_2, ..., \lambda_n$ }

Therefore, $\lambda_1 = 1$.

In order to disprove (c), we need to find an element y which lies in $u^{\Box}\cap U_1$ but not in iu^{\Box} . Similarly, we show hat there exists an element h which lies in $u^{\Box} \cap U_1$ and S_u but not in u^{\diamond} .

 $(c) \Longrightarrow (a)$. Let $u^{\Box} \cap U_1 = i u^{\Box} \cap U_1$ and $y = \sqrt{1 - \lambda_2^2} i u_2 + ... + \sqrt{1 - \lambda_n^2} i u_n$. Again, by [3, Lemma 2.1 (i)], we have

$$
||y|| = ||\sqrt{1 - \lambda_2^2}iu_2 + \dots + \sqrt{1 - \lambda_n^2}iu_n|| = \max\{\sqrt{1 - \lambda_2^2}, \dots, \sqrt{1 - \lambda_n^2}\} = \sqrt{1 - \lambda_n^2} < 1,
$$

$$
||u \pm y|| = ||u_1 + (\lambda_2 \pm \sqrt{1 - \lambda_2^2}i)u_2 + \dots + (\lambda_n \pm \sqrt{1 - \lambda_n^2}i)u_n||
$$

$$
= \max\{1, |\lambda_2 \pm \sqrt{1 - \lambda_2^2}i|, \dots, |\lambda_n \pm \sqrt{1 - \lambda_n^2}i|\} = 1.
$$

Therefore,

 $\max\{||u||, ||y||\} = \max\{1, \sqrt{1 - \lambda_n^2}\} = 1 = ||u \pm y||.$

This shows that u and y are M-orthogonal.

On the other hand, by [3, Lemma 2.1 (i)], we have

$$
\max\{||u||, ||iy||\} = \max\{||u||, ||y||\} = \max\{1, \sqrt{1 - \lambda_n^2}\} = 1,
$$

$$
||u - iy|| = ||u_1 + (\lambda_2 + \sqrt{1 - \lambda_2^2})u_2 + \dots + (\lambda_n + \sqrt{1 - \lambda_n^2})u_n||
$$

$$
= \max\{1, \lambda_2 + \sqrt{1 - \lambda_2^2}, \dots, \lambda_n + \sqrt{1 - \lambda_n^2}\} > 1.
$$

Hence, u and $\pm iy$ are not M-orthogonal, and y is not contained in $iu^{\square}.$

 $(b) \Longrightarrow (a)$. Let $u^{\Box} \cap U_1 = u^{\diamond} \cap U_1$ and $h = (1 - \lambda_2)u_2 + ... + (1 - \lambda_n)u_n$. Again, by [3, Lemma 2.1] (i)], we have

$$
||h|| = ||(1 - \lambda_2)u_2 + \dots + (1 - \lambda_n)u_n|| = \max\{1 - \lambda_2, \dots, 1 - \lambda_n\} = 1 - \lambda_n < 1,
$$
\n
$$
||u + h|| = ||u_1 + u_2 + \dots + u_n|| = \max\{||u_1||, \dots, ||u_n||\} = 1,
$$

$$
||u - h|| = ||u_1 + (2\lambda_2 - 1)u_2 + \dots + (2\lambda_n - 1)u_n|| = \max\{1, |2\lambda_2 - 1|, ..., |2\lambda_n - 1|\} = 1.
$$

Therefore,

$$
\max\{||u||, ||h||\} = \max\{1, 1 - \lambda_n\} = 1 = ||u \pm h||.
$$

This shows that u and h are M-orthogonal, i.e. $h \in u^{\square} \cap U_1$.

Let us suppose that $u \circ h$, $h = (1 - \lambda_2)u_2 + ... + (1 - \lambda_n)u_n$. By [3, Lemma 2.1(ii)], $F_u \subset F_{u+h}$. Then for any $f \in F_u$ we have $1 + \langle f, h \rangle = \langle f, u + h \rangle = 1$. Hence, $\langle f, h \rangle = 0$. On the other hand

$$
1 = \langle f, u + h \rangle = \langle f, u_1 + u_2 + \dots + u_n \rangle,
$$

i.e. $F_u \subset F_{u_1+u_2+\ldots+u_n}$. By (1), for each $f \in F_u$ we have

$$
\langle f, h \rangle = (1 - \lambda_2) \langle f, u_2 \rangle + \dots + (1 - \lambda_n) \langle f, u_n \rangle \neq 0.
$$

Therefore h does not contained in u^{\diamond} .

 $(d) \Longrightarrow (a)$. Let $S_u = u^{\diamond} \cap U_1$ and $h = (1 - \lambda_2)u_2 + ... + (1 - \lambda_n)u_n$. For any $z \in \mathbb{C}, |z| \leq 1$, by [3, Lemma 2.1 (i)], we have

$$
||u + zh|| = ||u_1 + (\lambda_2 + (1 - \lambda_2)z)u_2 + \dots + (\lambda_n + (1 - \lambda_n)z)u_n||
$$

= max{1, $|\lambda_2 + (1 - \lambda_2)z|, ..., |\lambda_n + (1 - \lambda_n)z|$ } = 1.

Therefore $h \in S_u$. But h does not contained in u^{\diamond} . The proof is complete.

$$
\qquad \qquad \Box
$$

For a norm-one element u in U we consider the sets $X_1(u)$ and $X_2(u)$ defined by

$$
X_1(u) = \{ y \in U : \exists t > 0, ||u \pm ty|| = 1 \},
$$

$$
X_2(u) = \{ y \in U : \forall \lambda \in \mathbb{C}, ||u \pm \lambda y|| = \max\{1, ||\lambda y||\} \}.
$$

Theorem 3. *Let* Z *be a reflexive complex SFS-space and let* u *be an element in* U *of norm one. Then u is a geometric tripotent if and only if* $X_1(u)$ *and* $X_2(u)$ *coincide.*

Proof. Suppose that $u \in \mathcal{GT}$. Observe that the inclusion $X_2(u) \subset X_1(u)$ is immediate from the definition of these sets. Hence we need only to show that $X_1(u) \subset X_2(u)$. Consider an element y in $X_1(u)$, i.e. there exists $t > 0$ with $||u \pm ty|| = 1$. Then

$$
2||ty|| = ||u + ty - (u - ty)|| \le ||u + ty|| + ||u - ty|| = 2.
$$

Hence ty lies in U_1 . Therefore $\max\{||u||, ||ty||\} = 1$ and ty lies in u^{\Box} . From this and theorem 2 (b), it follows that $ty \in u^{\square} \cap U_1 = u^{\diamond} \cap U_1$. The relation (3) implies that, for all $\lambda \in \mathbb{C}$,

$$
\lambda y = \frac{\lambda}{t} t y \in sp(u^{\diamond} \cap U_1) = u^{\diamond} \subset u^{\square}.
$$

Therefore, y lies in $X_2(u)$, as required.

Suppose that $X_1(u) = X_2(u)$, and consider an element y in $u^{\Box} \cap U_1$. From Lemma 1 (i) we see that $u^{\Box} \cap \overset{\rightharpoonup }{U_1} \subset X_1(u),$ and we have that y lies in $X_2(u).$ In particular,

$$
||u \pm iy|| = \max\{1, ||iy||\} \le 1.
$$

This shows that iy and $-iy$ are elements of $u^{\Box} \cap U_1$. Hence y lies in $iu^{\Box} \cap U_1$. We conclude that $u^{\square} \cap U_1 \subset i u^{\square} \cap U_1$. The reverse inclusion is obtained from similar arguments. By Theorem 2 (c), u is a geometric tripotent. The proof is complete. \Box

REFERENCES

- 1. Sh. A. Ayupov and N. Zh. Yadgarov, "Geometry of the state space of modular Jordan algebras," Russ. Acad. Sci. Izv. Math. **43**, 581–592 (1994).
- 2. C. M. Edwards and R. V. Hugli, "M-orthogonality and holomorphic rigidity in complex Banach spaces," Acta Sci. Math. **70**, 237–264 (2004).
- 3. Y. Friedman and B. Russo, "A geometric spectral theorem," Quart. J. Math. (Oxford) **37**, 263–277 (1986).
- 4. Y. Friedman and B. Russo, "Affine structure of facially symmetric spaces," Math. Proc. Cambridge Philos. Soc. **106**, 107–124 (1989).
- 5. Y. Friedman and B. Russo, "Some affine geometric aspects of operator algebras," Paifc. J. Math. **137**, 123–144 (1989).
- 6. R. V. Hugli, "Characterizations of tripotents in JB[∗]-triples," Math. Scand. **99**, 147–160 (2006).
- 7. M. M. Ibragimov and K. K. Kudaybergenov, "Geometric description L_1 -space," Russ. Math. (Iz. VUZ) 9, 16–21 (2013).
- 8. M. M. Ibragimov, K. K. Kudaybergenov, and J. X. Seypullaev, "Facially symmetric spaces and predual ones of hermitian part of von Neumann algebras," Russ. Math. (Iz. VUZ) **5**, 27–33 (2018).