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On the local time of a stopped random walk
attaining a high level
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Abstract:
Let X1, X2, . . . be independent random variables with the same

arithmetic distribution with the maximal span 1 and

EX1 = 0, EX2
1 := σ2, 0 < σ2 < +∞. (1)

Consider a random walk

S0 = 0, Si =
i∑

j=1

Xj, i ∈ N.

Let T be the first hitting time of the semi-axis (−∞, 0] by the ran-
dom walk {Si}, i.e.

T= min {i > 0 : Si ≤ 0} .

Set

S̃i =

{
Si, 0 ≤ i < T ;

0, i ≥ T.

The sequence
{
S̃i, i ≥ 0

}
is called a stopped random walk (SRW).

Let ξ̃ (0) = 0 and ξ̃ (k) mean the number of visits of SRW to the
state k ∈ N, i.e.

ξ̃ (k) =
∣∣∣{i ∈ N : S̃i = k

}∣∣∣ .
The random variable ξ̃ (k) is called the local time of SRW

{
S̃i, i ≥ 0

}
at the level k. Set for x > 0

Tx= min
{
i > 0 : S̃i > x

}
.
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We introduce a random process Zn, given by the formula

Zn (u) =
σ2ξ̃ (bunc)

n
, u ≥ 0.

The main result is a theorem describing the limiting distribution
of the process Zn, considered under the condition that Tn < +∞.
Before we formulate this theorem, we define a random process that
plays the role of a limiting one. Let {W (t) , t ≥ 0} be a standard
Brownian motion and

τx = inf {t > 0 : W (t) = x} .

We introduce the following two moments of attaining the state 0 by

the Brownian motion: one of them τ
(1)
0 precedes the time τ1 and the

other τ
(2)
0 follows this time, i.e.

τ
(1)
0 = sup {t ∈ [0, τ1] : W (t) = 0} , τ (2)

0 = inf {t > τ1 : W (t) = 0} .

The random process

W ↑
0 (t) = W

(
τ

(1)
0 + t

)
, t ∈

[
0, T ↑0

]
,

where T ↑0 = τ
(2)
0 − τ

(1)
0 , is called a Brownian high jump. We assume

that W ↑
0 (t) = 0 for t ≥ T ↑0 . Let l↑0 (u) be the local time of the

process
{
W ↑

0 (s) , s ∈ [0, t]
}

at the level u > 0, i.e.

l↑0 (u) = lim
ε→0

1

ε

+∞∫
0

I[u,u+ε]

(
W ↑

0 (s)
)
ds.

(here we mean convergence almost surely).

Theorem 1. If conditions (1) are satisfied, then, as n→∞,

{Zn|Tn < +∞}→l↑0, (2)

where the symbol → means convergence in distribution in the space
D [0,+∞) with the Skorokhod topology.

Now consider a critical Galton-Watson branching process {ζn, n ≥ 0},
starting with a single particle and satisfying the condition

Dζ1 := 2β ∈ (0,+∞).
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It turns out that, as n→∞,{
2ζbntc
βn

, t ≥ 0

∣∣∣∣ ζn > 0

}
→l↑0. (3)

The right-hand sides of relations (2) and (3) coincide. This allows us
to establish conditional limit theorems for various functionals from
a stopped random walk, using the corresponding statements for the
Galton-Watson branching process.

References
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Generalization of Lévy’s problem

Ivan ALEXEEV St. Petersburg Department of Steklov
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Key words: Infinity divisible distributions, operator-stable laws,
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Abstract: Back in the 30s of the last century, P. Lévy proved that
α-stable random variables and only they are limits for the sums
of i.i.d. random variables with positive normalization and some
centering. Later, Feldheim generalized this result to the case of
random vectors. Namely, he proved that α-stable random vectors
and only they are limits for sum i.i.d. random vectors with positive
normalization and some vector centering. During this talk, a similar
result will be obtained for the sum of i.i.d. complex-valued random
variables and vectors with complex normalization and centering.
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Large Deviations of Random Walk in Random
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Key words: Large Deviations, Random Walks, Random
Environment, Regenerative Sequences

Mathematical Subject Classification: 60J80

Abstract: We consider a random walk {Sn, n ≥ 0} in random
environment ~p, where a sequence of independent identically dis-
tributed random variables taking values in (0, 1). We suppose that
ρ := E ln((1 − p1)/p1) is less or equal than zero. Denote T0 :=
0, Tn := min{k ≥ 1 : Sk = n}, n ∈ N.

Solomon proved in [1] that if ρ ≤ 0 then random variables Tn, n ∈
N are finite almost surely. Limit theorems for Tn were obtained by
Kozlov, Kesten and Spitzer in [2]. Large deviation principle for
Tn, n ∈ N, was proved in [3]. Further development for the case of
non-independent environment was considered in [4].

We obtain the exact asymptotics of probabilities

P(Tn = k) = (1 + o(1))n−1/2F (k/n) exp(−L(k/n)n).

The relation holds uniformly in k/n = k(n)/n from any compact
subset K ⊂ B′. Here functions F,L and the set B do not depend
on n. The proof is based on the theory of large deviations for gen-
eralized renewal processes developed in [5]. We also use the results
of [6] to describe the functions F , L and the set B′.

Acknowledgement This work is supported by the Russian Sci-
ences Foundation under no.19-11-00111-Ext, https://rscf.ru/en/project/19-
11-00111/.
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Long edges in birth-death trees
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Abstract: In this talk we consider constant rate birth-death pro-
cesses, which are often used in Biology to model speciation and ex-
tinction. We shall establish a number of results concerning limiting
behaviour of particles (species) with extreme life lengths.

Acknowledgement The speaker is supported by the NSFC grant
no. 11731012.
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On the hitting time of a growing level by
catalytic branching walk
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Abstract: Branching random walks (BRWs) are probabilistic mod-
els allowing particles to move randomly (on a lattice or in the space)
and occasionally produce offspring. We analyze catalytic branching
random walk (CBRW) on an integer line Z. The main feature of the
CBRW is that the particles may produce offspring at the presence
of a finite collection of catalysts located arbitrarily at fixed inte-
ger points. For a supercritical BRW, an interesting problem is the
study of asymptotic behavior of its maximum, that is the coordinate
of the right-most particle at time t, as t tends to infinity. Such a
problem for a CBRW with light tails of the walk jump is solved in
[1] and [2]. Here we go further and, for the CBRW, establish the
limit theorem describing almost sure behavior of the time of first
hitting a linearly growing level. We consider constant growth rate
for the increasing level to guarantee the non-trivial limit. The new
problem is more complicated than the mentioned above since we
have to take into account not only the population maximum at time
t, but also its dynamics before t, as t grows unboundedly. How-
ever, the new result and the previous one in [1] turn out to be close
and involve the same constant in asymptotic formula. The proof is
based on a (rather intricate) system of non-linear integral equations,
large deviations theory for random walks, renewal theory and other
techniques.

Acknowledgement The author is grateful to Academician A.N.
Shiryaev for drawing the author’s attention to the problem ad-
dressed in the talk.

References

9



[1] Ph.Carmona, Y.Hu (2014). The spread of a catalytic branching
random walk, Ann. Inst. Henri Poincaré Probab. Stat., 50,
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Local lower deviations of branching process in
random environment with geometric number of
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Abstract:
We consider local probabilities of lower deviations for branch-

ing process Zn = Xn,1 + · · · + Xn,Zn−1 in random environment η.
We assume that η is a sequence of independent identically dis-
tributed variables and for fixed η the distribution of variable Xi,j

is geometric. We suppose that the associated random walk Sn =
ξ1 + · · · + ξn has positive mean µ and satisfies left-hand Cramer’s
condition E exp(hξi) < ∞ as h− < h < 0 for some h− < −1.
Under these assumptions, we find an asymptotic representation for
local probabilities P (Zn = bexp (θn)c) as θ ∈ (m−;µ) for some con-
stant m− ≥ 0. Problem of large deviations for branching pro-
cesses in random environment is well-studied: the asymptotics of
P(Zn > exp(θn)), where θ > µ, for branching processes in random
environment with geometric number of descendants was studied by
Kozlov ([1], [2]). Logarithmic asymptotics for probabilities of lower
deviations P(1 ≤ Zn < exp(θn)), where θ < µ, was obtained in
[3]. In this report the problem of lower deviations is considered
in local form P(Zn = k), where k(n) = k ∈ N. We assume that
θ(n) = θ := ln k/n lies in some interval [θ1; θ2] ⊂ (m−;µ). Under
these assumptions we define two deviation zones and obtain two
different asymptotics for P(Zn = k):

P (Zn = k) =
1 + o(1)√
2πnσ (hθ)

e−Λ(θ)n−θnΓ (1 + hθ) EṼ hθ−1
∞

for n→∞ uniformly in the first zone θ ∈ [θ1; θ2] ⊂ (m(−1);µ),

P (Zn = k) = (1 + o(1))Rn(−1)EV̂ −2
∞
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for n→∞ uniformly in the second zone θ ∈ [θ1; θ2] ⊂ (m−;m(−1)),

where m(−1), Ṽ∞, hθ and Λ(θ) are some parameters.
Acknowledgement This work is supported by the Russian Sci-

ences Foundation under no.19-11-00111-Ext, https://rscf.ru/en/project/19-
11-00111/.
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The initial stage of the evolution for
intermediately subcritical branching processes in
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Abstract: We consider a Galton-Watson branching process Z =
(Z0, Z1, . . .) evolving in i.i.d. random environment {f0, f1, ...}, where
fn = fn (s) is the generating function of the reproduction law of
particles of the n-th generation. Let Xn = log f ′n (1) . We assume
that the process Z is intermediately subcritical, i.e.

EX0 = 0, E[X0e
X0 ] = 0. (1)

Let N = {1, 2, ...}. Introduce the so-called associated random walk
S = {Sn}n≥0

Sn = X0 + ...+Xn, n > 0, S0 = 0.

Let
τn = min{k ≤ n | Sk ≤ S0, S1, . . . , Sn}

be the moment, when S takes its minimum for the first time on the
interval [0, n]. Let rn ∈ N, n > 0, and rn →∞, n→∞. For brevity
we will use the notation r = rn, τ = τr. Let the symbol ⇒ denotes
weak convergence.

We show that if (1) is valid and r = rn = o (n) as n → ∞, then
under some mild technical conditions

1) there is a random variable ξ with values in N such that as
n→∞ (

Zτr | Zn > 0
)
⇒ ξ; (2)

2) there is a positive random variable η such that as n→∞( Zr
eSr−Sτr

∣∣ Zn > 0
)
⇒ η. (3)
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Note also that the distribution of the number of particles at the ini-
tial period of the evolution for critical and weakly subcritical BPRE
given their survival up to a distant moment were investigated in [2]
and [3].

Acknowledgement This work was supported by the Russian
Science Foundation under grant no.19-11-00111-Ext, https://rscf.ru/en/project/19-
11-00111/.
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Quenched invariance principles for random
walks in random environment conditioned to
stay positive

Wenming HONG Beijing Normal University, China, E-mail:
wmhong@bnu.edu.cn

Key words: Random environment, random walk

Mathematical Subject Classification: 60G50, 60G57

Abstract
We consider a random walk {Sn}n∈N in random environment (in

time) ξ. For almost each realization of ξ, we prove a quenched in-
variance principles for the random walk conditioned to stay positive
(which specified by the Doob h-transform of the original one). To
this end, a key step is to formulate a (quenched) harmonic func-
tion. Although the traditional approach Wiener-Hopf factorisation
dose not work in this case, we prove the existence of the (quenched)
harmonic function under the annealed 2 + ε (for some ε > 0) mo-
ment condition on the increments. This is a joint work with Shengli
Liang.
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Capacity of the range of a critical branching
random walk

Tianyi BAI NYU Shanghai, China
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yueyun@math.univ-paris13.fr
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Mathematical Subject Classification: 60J80.

Abstract: Let Rn be the range of a critical branching random
walk with n particles on Zd, which is the set of sites visited by
a random walk indexed by a critical Galton–Watson tree condi-
tioned on having exactly n vertices. For d ∈ {3, 4, 5}, we prove

that n−
d−2
4 Cap(Rn), the renormalized capacity of Rn, converges in

law to the capacity of the support of the integrated super-Brownian
excursion. The proof relies on a study of the intersection probabili-
ties between the critical branching random walk and an independent
simple random walk on Zd.
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Remarks on the Kolmogorov constant in the
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Abstract: Consider a Galton-Watson branching process. In the
subcritical case, the mean of the particles population on the positive
trajectories of the process stabilizes and it approaches a constant
1
/
K, where K is called the Kolmogorov’s constant. The report

is devoted to the calculation of this constant in the Kolmogorov’s
moment conditions.

Let N0 = {0} ∪N and N = {1, 2, . . .}. We consider the Galton-
Watson Branching (GWB) process as a reducible homogeneous-
discrete time Markov chain with a state space S0 = {0} ∪ S, where
{0} is absorbing state and S ⊂ N is a class of essential communicat-
ing states. Let Z(n) be a population size at the time n ∈ N0 in the
GWB process with offspring rates {pk, k ∈ S0}. Define an appropri-
ate probability generating function (GF) f(s) :=

∑
j∈S0 pjs

j for s ∈
[0, 1). Then n-step transition probabilities Pij(n) := P

{
Z(n+ k) = j

∣∣ Z(k) = i
}

,
for any k ∈ N0, are

Pij(n) = coefficient of sj in
(
fn(s)

)i
for any i, j ∈ S0,

where fn(s) is the n-fold iteration of f(s); see [1, pp. 11–14].
In this work, we consider the non-critical case only, i.e. m :=∑
j∈S jpj = f ′(1−) 6= 1.

Let Rn(s) := q−fn(s), where q is an extinction probability of the
process starting with a single particle. In 1938, A.N.Kolmogorov [2]
established that ifm < 1, the survival probabilityQ(n) := P

{
Z(n) > 0

}
=
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Rn(0) of the GWB process admits an asymptotic representation

Q(n) = Kmn
(
1 + o(1)

)
as n→∞, (1)

if and only if f ′′(1−) <∞, where K is an absolute constant. Later,
A.V.Nagaev and I.S.Badalbaev [3] refined Kolmogorov’s result by
proving the validity of the asymptotic representation (1) under the
x log x condition.

In this report we find an explicit form of the constant K under
the Kolmogorov theorem condition [2].

Theorem. Let m 6= 1, β := f ′(q), 2bq := f ′′(q) < ∞ and γ :=
bq
/

(β − β2). Then

Rn(s) = Aγ(s) · βn
(
1 + o(1)

)
as n→∞,

where Aγ(s) = (q − s)
/(

1 + γ(q − s)
)
.

Corollary. Let m < 1, 2b := f ′′(1−) < ∞ and γ := b
/

(m−m2).
Then

K =
1

1 + γ
.
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geometric distribution
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Abstract:
We consider the branching process in random environment, given

by the sequence of independent probability generating functions

fi−1,n(s) :=
1− pi,n
1− pi,ns

, pi,n :=
1

1 + e−Xi−bi,n
, i ∈ {1, . . . , n},

where Xi – independent identically distributed random variables
with EX1 = 0, DX1 ∈ (0,∞), bi,n is some sequence of real numbers.
Let Zk,n be the population size at moment k, Z0,n = 1. Set

X̂i,n := ln f ′i−1,n(1) = Xi+bi,n, Ŝ0,n := 0, Ŝk,n := X̂1,n+. . .+X̂k,n.

We will call the sequence Ŝk,n, k ≥ 0, the associated random walk
for Zk,n. In the case bi,n ≡ 0, the associated random walk is random
walk with finite variance and zero drift. In this case we denote the
population size at moment k by Z0

k .
Our main result is the following theorem.

Theorem 1 Assume that there exists δ ∈ (0, 1/2) such that,

max
k≤n

kδ−1/2

∣∣∣∣∣
k∑
i=1

bi,n

∣∣∣∣∣→ 0, n→∞.

Then
P(Zn,n > 0) ∼ P(Z0

n > 0), n→∞.
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On sizes of trees in a Galton-Watson forest with
power-law distribution
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Abstract: Let GN be a critical Galton – Watson branching pro-
cess with N initial particles and let the number of offspring of each
particle be a random variable ξ following the distribution

pk = P {ξ = k} =
1

(k + 1)τ
− 1

(k + 2)τ
, k = 0, 1, 2, . . . (4)

The process GN induces a conditional probability distribution on
the subset FN,n of its trajectories with N +n vertices provided that
the number of vertices is equal to N+n. We denote by FN,n the thus
constructed Galton – Watson forest with N trees and n non-rooted
vertices. It is easy to show that Eξ = ζ(τ, 2), where ζ(s, v) =
∞∑
k=0

(k + v)−s is the generalized zeta-function. Since the branching

process GN is critical, the equality ζ(τ, 2) = 1 holds and therefore
τ ≈ 1.728. For such a parameter value only the first moment of the
distribution (4) is finite.

Let η(F) be a random variable equal to the maximum tree size
and µr(F) be a random variable equal to the number of trees of
size r in the forest FN,n. Limit distributions of η(F) and µr(F) are
obtained as N, n→∞, n/N τ ≥ C > 0.

We denote by g(x) a stable distribution density with a parameter
τ and a characteristic function

f(t) = exp
{
−Γ(1− τ)|t|τe−iπτt/2|t|

}
,

and let p(x) be a stable distribution density with a parameter 1/τ
and a characteristic function

h(t) = exp
{
− (−Γ(1− τ))−1/τ |t|1/τe−iπt/2τ |t|

}
.
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In particular the following statements hold.

Theorem 1. Let N, n → ∞ in such a way that n/N τ → γ, where
γ is a positive constant. Then for any positive z

P

{
η(F)

n
≤ z

}
→ 1

2πp (γ)

∞∑
k=0

(−1)k

k!
Ik(γz, γ),

where

I0(u, v) = p(v), Ik(u, v) =

∫
xk(u,v)

p (v − x1 − . . .− xk) dx1 . . . dxk

(2πC(τ))k (x1 . . . xk)
(τ+1)/τ

,

xk(u, v) = {xi ≥ u, i = 1, . . . , k, x1 + . . .+ xk ≤ v} , k = 1, 2, . . . ,

C(τ) = 1/τΓ(1− 1/τ) (−Γ(1− τ))1/τ .

Theorem 2. Let N, n→∞ in such a way that n/N τ →∞. Then
for any fixed positive z

P

{
n− η(F)

N τ
< z−τ

}
→ τ

−z∫
−∞

g(y)dy.
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Branching processes in random environment
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Ivan KORSHUNOV Steklov Mathematical Institute of Russian
Academy of Science, Moscow, Russia, E-mail:
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Key words: Branching processes, random walks, random envi-
ronment

Mathematical Subject Classification: 60J80

Abstract: It is well known that a branching process in random
environment can be described by the associated random walk

Sn = ξ1 + . . .+ ξn,

where ξk = lnϕ′ηk(1), ϕx(t) and ηk are the generating functions of the
number of descendants and the random environment respectively.
The talk will address the issue of degeneration of a branching process
in random environment with cooling with Eξ1 > 0 which differs
from the classic BPRE in that each environment lasts for several
generations. It turns out that this varianant of BPRE is also closely
related to random walk

Sn = τ1ξ1 + . . .+ τnξn,

where ξk = lnϕ′ηk(1) and ϕx(t) and ηk are generating functions of the
number of descendants and the random environment ewspectively
and τk is a duration of the k-th cooling.

In this talk we will show that if for any ε > 0

∞∑
n=1

P

(
εξ1 < −

τ1 + . . .+ τn
τn

)
is divergent then the process degenerates with probability 1. Also
we will show that if 0 < Dξ1 <∞ and

∞∑
n=1

τ 2
n

(τ1 + . . .+ τn)2
<∞
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then the process degenerates with probability less than 1.
Acknowledgement This work was supported by the Russian

Science Foundation under grant no.19-11-00111-Ext, https://rscf.ru/en/project/19-
11-00111/.
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Branching random walks with the generation of
particles determined by Gumbel-type random
potential. Simulation.
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Mathematical Subject Classification: 60J27; 60J80;
05C81; 60J85

Abstract:

We consider continuous-time branching random walks (BRWs)
on a multidimensional lattice in a random branching medium. The
branching medium may contain a finite or non-finite number of par-
ticle generation sources. The underlying walk of particles is sym-
metric, homogeneous by space, and irreducible. In such BRWs, at
large times, rare fluctuations of the medium may lead to “intermit-
tency” which is an anomalous property of the limiting distribution
of the random field that occurs in a random media. An intermittent
field cannot be described correctly with its moments. In the case of
BRW in random media, the field of quenched moments of particles
turns out to be intermittent under specific conditions [1,2].

The study of BRWs at finite time intervals seems to be a dif-
ficult task that has not yet been solved satisfactorily enough. In
the work [3] devoted to the comparison of BRW in random and
non-random media, we have shown that for BRW in random media
with potential with Weibull-type tails it is possible to obtain quali-
tative intermittency predicted by the theory already at finite times.
In addition, we suggested a measure that allows numerical estima-
tion of the intermittency of the field of quenched moments. The
purpose of this work was to study whether it is possible to obtain
similar results for a potential with Gumbel-type tails. In particu-
lar, to evaluate whether it is possible to use the same measure of
intermittency as for potential with Weibull-type tails. Based on the
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simulation results, we showed that intermittency can be observed
and numerically estimated for a potential with Gumbel-type tails.

Acknowledgement. The research was supported by the Rus-
sian Foundation for the Basic Research (RFBR), project No. 20-01-
00487.
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A persistense result for a critical multitype
branching system
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Mathematical Subject Classification: 60J80, 60K15

Abstract: We consider a critical branching system of particles liv-
ing in Rd with a finite number of types, in which an individual of
type i lives a random lifetime with distribution functions Γi, during
which it moves according to a symmetric αi-stable motion. We con-
sider the case when the lifetime distribution Γ1 of particles of type
1 has a power tail t−γ, γ ∈ (0, 1], while the lifetimes of the other
particle types have finite means. Under the usual independence as-
sumptions in branching systems, we obtain a sufficient condition for
the persistence of the system which is valid for a class of branching
laws. Our result compelements the extinction result obtained by
Kevei and Lopez-Mimbela [1].

Acknowledgement This research was supported in part by CONA-
CyT Grant No. 652255 C.F. 2019.
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Exponential ergodicity of branching processes
with immigration and competition
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Mathematical Subject Classification: 60J80, 60J25,
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Abstract: We study the ergodic property of a continuous-state
branching process with immigration and competition, which is an
extension of the models studied by Pardoux (2016, Springer) and
Berestycki et al. (Probab. Theory Related Fields, 2018) with an
additional immigration structure. The exponential ergodicity in a
weighted total variation distance is proved under natural assump-
tions. The result applies to general branching mechanism including
all stable types. The proof is based on a Markov coupling process
and a nonsymmetric control function for the distance, which are
designed to identify and to take the advantage of the dominating
factor among the branching, immigration and competition mecha-
nisms in different parts of the state space. The approach provides a
way of finding explicitly the ergodicity rate.

Acknowledgement This research is supported by the National
Key R&D Program of China (No. 2020YFA0712900), the National
Natural Science Foundation of China (Nos. 11731012, 11831014,
11901570 and 12071076) and the Education and Research Support
Program for Fujian Provincial Agencies.
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Abstract: Consider a d-type supercritical branching process Zi
n

= (Zi
n(1), · · · , Zi

n(d)), n ≥ 0, in an independent and identically
distributed random environment ξ = (ξ0, ξ1, . . .), starting with one
initial particle of type i, whose offspring distributions of generation
n depend on the environment ξn at time n. In [1] we have estab-
lished a Kesten-Stigum type theorem for Zi

n, which implies that for
any 1 ≤ i, j ≤ d, Zi

n(j)/EξZ
i
n(j) → W i in probability as n → +∞,

where Eξ denotes the conditional expectation given the environment
ξ, and W i is a non-negative and finite random variable for which
a criterion for non-degeneracy is obtained. Here we present the
following results established in [2]: a necessary and sufficient con-
dition for the convergence in Lp of the normalized population size
Zi
n(j)/EξZ

i
n(j), a theorem giving its exponential convergence rate,

and similar results for the associated fundamental martingale (W i
n).

We also present a result on the precise large deviations for the total
population size ‖Zn‖1 :=

∑n
j=1 Zn(j) of generation n recently es-

tablished in [3], whose proof uses the Lp convergence and a similar
large deviation result on products of random matrices proved in [4].
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Abstract: We give a functional limit theorem for the fluctuations of
the rescaled occupation time process of a critical branching particle
system {Nt, t ≥ 0} in Rd with symmetric α-stable motion. The
branching law is binary critical. We consider the case where the
distribution function F of the particle lifetimes satisfies F (0) = 0,
F (x) < 1 for all x ∈ [0,∞), and

1− F (u) ∼ u−γ

Γ(1− γ)
when u→∞ (5)

for some γ ∈ (0, 1), where Γ(·) denotes the Gamma function. We
assume that N0 is a Poisson random field with Lebesgue intensity
measure. Let us write < µ, f >:=

∫
fdµ, where µ is a measure and

f is a measurable function. For T > 0, let (LT (t))t≥0 be the rescaled
occupation time process of {Nt, t ≥ 0}, which is defined by

< LT (t), φ >=

∫ Tt

0

< Ns, φ > ds = T

∫ t

0

< NTs, φ > ds, φ ∈ S(Rd),

(6)
where S(Rd) is the space of rapidly decreasing functions. Let (XT (t))t≥0

be the occupation time fluctuations process, that is,

< XT (t), φ > :=
1

FT

(
< LT (t), φ > − E(< LT (t), φ >)

)
,

where FT is a normalizing constant. Our objective is to find a suit-
able FT such that XT converges in distribution on C([0, τ ],S ′(Rd))
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as T →∞ for any τ > 0. We will show that under the assumption
αγ < d < α(1 + γ), weak convergence of XT on C([0, τ ],S ′(Rd)) as
T →∞ holds for any τ > 0.

33
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Abstract:
Let X1, X2, . . . be a sequence of i.i.d. random variables, and

Wn+1 = max{0, Wn +Xn+1}, W0 = 0.

We introduce stopping time

T = inf{n ≥ 1 : Wn ≥ b}, b > 0.

The goal is to obtain two-sided inequalities for ET under con-
ditions EX1 > 0 and EX1 < 0. These bounds are then used to
characterize the quality of the sequential procedure of cumulative
sums (CUSUM procedure) for the early detection of change in dis-
tribution.

Acknowledgement The work was supported by the Russian
Science Foundation (project N 22-21-00396).
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Abstract:
Let w(τ) = (w1(τ), w2(τ)), τ ≥ 0, w(0) = (0, 0) be a two-

dimensional Wiener process. Consider a family of random linear
operators

Atλ f(x) =

t∫
0

eλτ f(x− w(τ)) dτ, (7)

defined on the functions f(x) ∈ L∞ ∩ C(R2) for all t > 0 and
λ ∈ C, Reλ < 0.

Such an operator family arises in the construction of a probabilis-
tic representation of the resolvent of the two-dimensional Laplacian.

Namely, the following relation holds

(−1

2
∆−λ I)−1 f(x) =

∞∫
0

eλ τ E f(x−w(τ)) dτ = (u) lim
t→∞

E [Atλ f(x)]

(8)
for all functions f(x) ∈ L∞ ∩ C(R2).
Note that the operator Atλ cannot be extended to an integral op-

erator on the entire space L2(R2). In particular, from a probabilistic
point of view, this means that the process w(τ) does not have local
time at an arbitrary point x ∈ R2 by time t > 0.

We will construct a family of random integral operators Rt
λ de-

fined on the entire space L2(R2) and satisfying the relation

(−1

2
∆− λ I)−1 f(x) = (L2) lim

t→∞
E [Rt

λ f(x)] (9)

for all λ ∈ C, Reλ ≤ 0.
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It will be shown that the kernels rλ(t, ·) of the corresponding op-
erators belong with probability 1 to the Sobolev class Wα

2 (R2), 0 ≤
α < 1/2. Also, for the function rλ(t, ·), an explicit formula will be
obtained in the form of a trajectory functional of the two-dimensional
Wiener process w(τ).
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Abstract: We consider the set of Galton-Watson forests consisting
of N rooted trees and n nonroot vertices. Let ξ denote the number of
offspring of each particle in the critical forest-generating branching
process. Assume that

P{ξ = k} =
h(k + 1)

(k + 1)τ
, k = 1, 2, . . . , τ ∈ (2, 3), (10)

where the slowly varying function h(x) for x ≥ 1 takes only posi-
tive values. Such branching processes are used successfully to study
random graphs intended for modeling complex communication net-
works in particular the Internet. The papers [1, 2] were the first to
propose using the results on random forests in order to study the
asymptotics of the structure of configuration graphs. The known
results of Galton-Watson forests were obtained under the condition
that the offspring distribution of the branching process has a fi-
nite variance. We can see that the distribution (10) has an infinite
variance. This means that the present theory should be developed
further. Now we have proved theorems on the limit distributions of
the maximum tree size and of the number of trees of a given size for
various relations between N and n as they tend to infinity.
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Abstract: We consider the Cauchy problem for the higher order
Schrödinger equation

i
∂u

∂t
=

(−1)m

(2m)!

∂2mu

∂x2m
+ V (x)u, u(0, x) = ϕ(x), m ∈ N.

Probabilistic approximations of the Cauchy problem solution u(t, x)
for the Schrödinger equation (m = 1) by expectations of functionals
of stochastic processes were constructed in [1]. The case when V = 0
and m ≥ 2 was considered in [2]. Now we extend our results to the
case when m ≥ 2. As before the approximating operators take the
form of expectations of functionals of a certain random point field.

Acknowledgement This work was supported by the Russian
Science Foundation (grant 22-21-00016).
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Abstract: We consider continuous-time critical symmetric branch-
ing random walks on a multidimensional lattice Zd , d ≥ 1, with
the source of particle generation at the origin. We assume that the
underlying random walk is symmetric, spatially homogeneous, and
irreducible, and that the birth and death of particles at the source
is described by a Markov branching process. One of the main prob-
lems is to study the exact form of the limiting distribution of the
particle population at the source. This problem has been solved so
far only for some relations between the parameters specifying walk-
ing and branching of particles. Based on limit theorems about the
distribution of the sojourn time of the underlying recurrent stochas-
tic random walk at the origin (see Aparin, Popov, and Yarovaya,
2021), we obtain limit theorems for the distribution of the parti-
cle population at the source with finite variance of the jumps of
the random walk. Currently, stochastic walks with infinite variance
of jumps have been much less studied than those with finite vari-
ance. In this context, the theorems for such stochastic walks deserve
special attention. For d = 1, the limiting distribution of the par-
ticle population at the source under normalization on the Green’s
function of the transition probabilities depends on the parameters
of the system and may take the form of the Mittag-Leffler or the
exponential distribution for a recurrent random walk.
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Let for each n ≥ 1,
{
ξ

(n)
k,j , k, j ≥ 1

}
and

{
ε

(n)
k , k ≥ 1

}
be two

independent families of independent identically distributed random
variables with nonnegative integer values which are defined on a
fixed probability space (Ω,F ,P). The sequence of branching pro-

cesses with immigration
{
X

(n)
k , k ≥ 0

}
, n ≥ 1 is defined by recur-

sion:

X
(n)
0 = 0, X

(n)
k =

X
(n)
k−1∑
j=1

ξ
(n)
k,j + ε

(n)
k , k, n ≥ 1. (11)

We discuss conditions on validity of weak convergence of properly
normalized process (1) to the deterministic function under assump-
tion that immigration is a rowwise ψ−mixing and the offspring mean
tends to its critical value 1, moreover, immigration mean and vari-
ance controlled by regularly varying functions. Furthermore, we
obtain a fluctuation limit theorem for branching process with immi-
gration when immigration is m−dependent where m may tend to
infinity with the row index at a certain rate. In this case the limiting
process is a time-changed Wiener process. Our results extend and
improve the results in [1] and [2].
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Abstract: We consider a strongly subcritical branching process
{Zn, n > 0} in a random environment (BPRE). We assume that
EZh

1 < +∞ for some h > 1 and consider large deviations probabili-
ties in integral P(lnZn ≥ x) and integro-local P(lnZn ∈ [x, x+ ∆))
form, x/n ∈ (0, γ), where γ is some constant. D. Buraczewski
and P. Dyszewski ([1]), A. Shklyaev ([2]) considered the supercrit-
ical BPRE for x/n ∈ (µ,m+), critical, weakly and intermediately
subcritical BPREs for x/n ∈ (0,m+) and the strongly subcritical
BPRE for x/n ∈ (γ,m+), where m+ is some positive constant. E.
Prokopenko, M. Struleva ([3]) considered large deviations for the
supercritical case. It’s known that in the strongly subcritical case
for x/n ∈ (0, γ) the asymptotical behaviour of P(lnZn ≥ x) has
another form. It was proved by Kozlov ([4]) in the case of geometric
conditional distribution and in LDP form by C. Bounghoff and G.
Kersting ([5]). We’ll discuss the results of A. Shklyaev ([6]) about
precise asymptotics of large deviation probabilities in that case.

After that we consider branching process Z∗n with immigration
in random environment (BPIRE). We assume that EZh

1 < +∞
for some h > 1 (including the immigration). Large deviations for
BPIRE were considered by D. Dmitrusenkov and A. Shklyaev ([7]) in
the geometric case and A. Shklyaev ([2]) for the general case. Both
works deal with the supercritical and critical case for x/n ∈ (µ,m+)
and for subcritical case for x/n ∈ (γ∗,m+), where γ∗ is some con-
stant. The situation of x/n ∈ (0, γ∗) was never studied, but there
was a hypothesis that the behaviour of the process is close to those
of strongly subcritical BPRE. We obtain the precise asymptotics of
large deviation probabilities in that case. We’ll discuss the difference
between large deviations of BPRE and BPIRE.
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Abstract: We introduce a general class of branching Markov pro-
cesses for the modelling of a parasite infection in a cell population.
Each cell contains a quantity of parasites which evolves as a diffusion
with positive jumps. The drift, diffusive function and positive jump
rate of this quantity of parasites depend on its current value. The
division rate of the cells also depends on the quantity of parasites
they contain. At division, a cell gives birth to two daughter cells
and shares its parasites between them. Cells may also die, at a rate
which may depend on the quantity of parasites they contain. We
study the long time behaviour of the parasite infection.
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Abstract: We study random operators arising when one constructs
a probabilistic representation of the resolvent of an operator A =
−1

2
d
dx

(
b2(x) d

dx

)
. Namely, consider the family of operatorsRt

λ, Reλ ≤
0 defined by

Rt
λf(x) =

∫ t

0

eλτf(ξx(τ)) dτ, (12)

where ξx(t) is a solution of the stochastic differential equation

dξx(t) = b(ξx(t))b
′(ξx(t)) dt+ b(ξx(t)) dw(t), ξx(0) = x. (13)

We show that under some conditions on the function b(x) with
probability one the operator Rλ is an integral operator in L2 and
study some properties of its kernel. We also construct a similar
family of random operators for the case Reλ ≥ 0. Namely, we
construct a family of random integral operators

Rt
λf(x) =

∫
R

rλ(t, x, y)f(y) dy,

where λ ∈ C, t ∈ [0,∞] if Reλ < 0 and t ∈ [0,∞) if Reλ ≥ 0
having the following properties.

1. For every λ ∈ C, t ∈ [0,∞) with probability one the operator
Rt
λ is a bounded operator in L2(R).
2. If Reλ ≤ 0 then (12) holds, and under the condition Reλ < 0

the equality (12) holds for t =∞.
3. For every λ, t, x with probability one the function rλ(t, x, ·)

belongs to the Sobolev space Wα
2 for every α ∈ [0, 1

2
).

4. At λ = 0 the function rλ(t, x, y) coincides with the local time
of the process ξx(·) at point y up to the time t (see [1]).

5. If Reλ < 0 then for every f ∈ L2(R) we have

E

∫
R

rλ(∞, ·, y)f(y) dy = (A− λI)−1f. (14)
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6. If Reλ ≤ 0 and λ /∈ σ(A) (by σ(A) we denote the spectrum
of the operator A), then for every f ∈ L2(R) we have

lim
t→∞

E

∫
R

rλ(t, ·, y)f(y) dy = (A− λI)−1f. (15)

7. If λ ∈ σ(A) then (15) holds for every f ∈ D(A− λI)−1.

Acknowledgement This work was supported by RSF (grant
22-21-00016).
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Let Zn be a branching process in varying environment with the

set of offspring distributions P̂ = (P0,P1, . . .) and let T be a ge-
nealogical tree for Zn. Define a random walk on T as follows:

S(π) =
∑
e∈π

ξn(e),j(e),

where π is an arbitrary path in T starting in root, n(e) is the number
of generation in which e ends, j(e) is the number of particle in
generation n(e) in which e ends and {ξn,j}n,j≥1 is the sequence of
independent and identically distributed random variables that does
not depend on genealogical tree T .

We are interested in studying tail asymptotics for the

Rg
µ = sup

π:|π|≤µ
(S(π)− g(|π|)) ,

that is the rightmost point of g-shifted random walk on T , where
µ ≤ ∞ is an arbitrary counting random variable and g is an arbitrary
function on {0, 1, 2, . . .}).

We obtain conditions under which

P
(
Rg
µ > x

)
= (1 + o(1))Hg

µ(x; P̂) as x→∞,

uniformly over all suitable classes of time moments µ and functions
g, where

Hg
µ(x; P̂) =

∞∑
n=1

E [ZnI(µ ≥ n)]F (x+ g(n)).
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Abstract: Let X(l)(n) =
(
X

(l)
j (n)

)
j∈Z , n ∈ N0 := N ∪ 0, be the

Galton-Watson branching process starting from one particle of type

l ∈ Z, where Z
(l)
j (n) is the number of particles of type j at time

n. Let’s put X(n) := X(0)(n) =:
(
Xj(n)

)
j∈Z . Define the generating

function f(s) for the random vector ξ := (ξi)i∈Z ∈ NZ0 , where ξi is
the type i offspring number for a particle of type 0, with its own
distribution pj := P

(
ξ = j

)
f(s) := Esξ =

∑
j∈NZ0

pjs
j, j =

(
ji
)
i∈N ∈ N

Z
0 ,

where s =
(
si
)
i∈Z ∈ [0, 1]Z , and sj :=

∏
i∈Z s

ji
i . An analogous

generating function for a particle of type m ∈ Z has the form
fm(s) = f

(
s(m)

)
, where s(m) :=

(
si+m

)
i∈Z ∈ [0, 1]Z , s = s(0).

Process X(n) :=
∣∣X(n)

∣∣ =
∑∞

j=−∞Xj(n) with generating func-

tion p(s) := Es|ξ| = f(1s) =:
∑∞

i=0 pis
i will be called the accompa-

nying one. In terms of X(n), we study only the critical case with a
finite variance for the number of offspring.

We fix n and from the processes X(k) and X(k), k = 0, 1, · · · , n,
we exclude all particles that have no offspring at time n. The re-
sulting processes are called reduced and are denoted by X(k, n) and
X(k, n) =

(
Xj(k, n)

)
j∈Z , k = 0, 1, · · · , n. Set η :=

∑∞
j=−∞ jXj(1)

and V (k, n) :=
∑∞

j=−∞ jXj(k, n). It is obvious that X(n, n) =

{X(n)|X(n) > 0} and X(n, n) = {X(n)|X(n) > 0}.
It is well known (see [1], Ch. I, §10) that in the critical case for

Dξ = σ2 and finite third moment p′′′(1) < ∞ for Qn := P(X(n) >
0)

Q−1
n = 0.5σ2n+O

(
lnn
)
,
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while Yaglom’s theorem asserts the convergence limn→∞P
{
QnX(n) >

x
∣∣X(n) > 0

}
→ e−x.

In [2] a generalization of Yaglom’s theorem for processes with a
countable number of particle types is proved. The history of the
problem is also described in some detail there. The essence of this
generalization was that if in the limit, particles with small numbers
of types are mainly preserved.

Suppose that Eξ = 1, Dξ = σ2, Eη = a1 6= 0 and among the pj,
only a finite number are nonzero. Than

EX(k, n) =
Qn−k

Qn

; DX(k, n) =
kQ2

n−k

nQ2
n

(
1 + on

(
1
))

; EV (k, n) = ka1
Qn−k

Qn

;

DV (k, n) =
(
a1k + a2

1(k − 1)
)(

1 + on
(
1
))
, k = O(1);

DV (k, n) = (a1 + a2
1)k(1− 0.5kn−1)

Q2
n−k

Q2
n

(
1 + on

(
1
))
, k →∞.

lim
M→+∞

lim
n→∞

P

(∣∣Q−1
n−kV (k, n)− 0.5a1σ

−2n2
∣∣

n
√
n

> M

)
= 0, for n− k = o(n).
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Abstract:
Let Z = {Zn, n = 0, 1, 2, ...} be a critical branching process

evolving in a random environment generated by a sequence {Fn(s), s ∈ [0, 1], n = 1, 2, ....}
of i.i.d. probability generating functions. Denote Xi = logF ′i (1), i =
1, 2, ... and introduce a random walk

S0 = 0, Sn = X1 + ...+Xn, n ≥ 1.

We impose the following restrictions on the characteristics of the
process.

Assumption B1. The random variables Xn, n = 1, 2, ... are
independent and identically distributed with

EX1 = 0, σ2 = DX1 ∈ (0,∞).

Besides, the distribution of X1 is non-lattice.
Assumption B2. There is an ε > 0 such that

E

(
log+ F ′′1 (1)

(F ′1(1))2

)2+ε

< ∞.

Theorem 2 Let Assumptions B1-B2 be valid. If ϕ(n), n = 1, 2, ...
is a sequence of positive numbers such that ϕ(n) → ∞ as n → ∞
and ϕ(n) = o(

√
n), then there is a constant Θ ∈ (0,∞) such that

P (Zn > 0;Sn ≤ ϕ(n)) ∼ Θϕ2(n)

n3/2
, n→∞.

Theorem 2 compliments Theorem 1.1 in [1] where it was shown
that there is a constant C ∈ (0,∞) such that P (Zn > 0) ∼ C

√
n as

n→∞.
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Abstract: The paper presents the main results of [3]. Let H be
the permutation group on the set {1, . . . , N}. Typles (a1, . . . , as),
(b1, . . . , bs) of elements sets {1, . . . , N} are called H-equivalent if
there is a permutation h ∈ H such that b = h(a), i.e.

bi = h(ai), i = 1, . . . , s.

For H-equivalent tuples a = (a1, . . . , as) and b = (b1, . . . , bs) we will
use the notation aHb. If the tuples a and b are not H-equivalent,
then we use the notation H.

Let x1, x2, . . . be the sequence elements of the set {1, . . . , N}. We
will say that the tuple z = (xj, . . . , xj+s−1) is the H-repetition of
the tuple y = (xi, . . . , xi+s−1), j > i, if yHz.

Further as a sequence x1, x2, . . . consider a nonperiodic homo-
geneous Markov chain X = {X0, X1, . . . , Xn, . . .} with outcomes
1, . . . , N , indecomposable matrix transition probabilities P = ‖pk,l‖
and arbitrary initial distribution. Denote π = (π1, . . . , πN), where
πk > 0, k = 1, ..., N , stationary distribution of the chain X.

We are interested in events
{
Yi1−1HYi2−1, Yi1(s)HYi2(s)

}
, con-

sisting in the fact that at the moments i1 and i2 the series begins
H-repetitions of s-tuples. We study the asymptotic behavior of the
distribution of the number of series of H-repetitions s-tuples starting
up to the moment n:

ξ̃2(n, s,H) =
∑

1≤i1<i2≤n

I
{
Yi1−1HYi2−1, Yi1(s)HYi2(s)

}
.

The problem of the number of equivalent tuples in random dis-
crete sequences was first considered in [1]. In this paper, sufficient
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conditions for the Poisson approximation were obtained for the num-
ber of pairs of equivalent tuples in a sequence independent random
variables distributed uniformly on set {1, . . . , N}. Further devel-
opment of this direction is reflected in the review paper [2], which
describes the results of works that appeared before 2003 year, and
also announced a number of results published a little later.

Theorem 1. Let the matrix P be indecomposable, p2 < ρ,
n→∞, and s = s(n)→∞ so that the condition holds n2ρs = O(1).
Then

P
{
ξ̃2(n, s,H) = ξ̃2(n, s,HP)

}
→ 1.

Let us introduce the notationR2
HP

= ρs−2(1−ρ)|HP|
∑

a,b∈{1,...,N}
π2
ap

2
a,b.

Theorem 2. Let the matrix P be indecomposable, p2 < ρ,
n → ∞, and s = s(n) changes so that s2/n → 0 and n2R2

HP
/2 →

λ ∈ (0,∞). Then the distribution of the random variable ξ̃2(n, s,H)
converges to Poisson distribution with parameter λ.
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Abstract:

The talk is devoted to continuous-time stochastic processes, which
can be described in terms of birth, death and transport of parti-
cles. Such processes on multidimensional lattices are called branch-
ing random walks, and the points of the lattice at which the birth
and death of particles can occur are called branching sources. Par-
ticular attention is paid to the analysis of the asymptotic behavior
of particle numbers and their moments for symmetric branching
random walks with a finite set of branching sources and a finite
or infinite number of initial particles under various assumptions on
the variance of random walk jumps. The behavior of moments is
mainly determined by the structure of the spectrum of the evolu-
tionary operator of average particle numbers and requires the use
of the spectral theory of operators in a Banach space. The proof
of some limit theorems on branching random walks with a finite
number of sources and pseudo-sources, in which random walk sym-
metry breaking is based on checking the conditions that guarantee
the uniqueness of the definition of the limit probability distribution
of particle numbers by their moments. For branching random walks
with branching sources at each point of the lattice, in which the
rates of birth and death of particles are equal and the underlying
random walk is recurrent, limit theorems on the behavior of popu-
lations and subpopulations of particles are given. One of the new
directions in the theory of branching random walks is the study of
multitype branching random walks both in a non-random and in
a random “branching” environment. A series of results of numer-
ical simulation of branching random walks are presented and the
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possibility of applying such processes in medicine and genetics are
discussed. The talk is partly based on papers [1-4].
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Abstract:
I plan to review several problems and results connected with

branching processes and processes of random allocations of parti-
cles into cells.

1. First we consider a model of populations evolving in a sequence
of layers consisting of finite sets of cells.

Let S = {1, . . . , N} be a finite set, νt,i (t, i = 1, 2, . . .), be indepen-
dent random variables with generating function f(s) =

∑∞
k=0 pks

k.
The process {ξt}n≥0 begins with ξ0 = s ≤ N particles in 0-th

layer. For any t = 0, 1, . . . let ηt+1 = νt,1 + . . .+ νt,ξt be the number
of particles born by ξt particles in the t-th layer.

This ηt+1 particles are allocated over the cells of (t + 1)-th layer
independently and equiprobably. The value ξt+1 equals the number
of non-empty cells after this allocation. In other words, particles
allocated in the same cell are glued together.

For the case s0 = N some estimates of the probability of extinc-
tion at least at t-th layer are obtained.

2. Second problem relates to the case f(s) = s, s ∈ [0, 1],
where there are no branching. Here the limit distribution of τN =
min{t : ξt = 1} as N →∞ is found.

3. We discuss also limit theorems for the distributions of distance
to the nearest common ancestor of all particles existing in a branch-
ing process at the moment t under condition that the process does
not extinct at the moment t→∞.

4. Finally we consider theorems on the value ξt under the condi-
tion that ξ0 = s = o(N), N, s→∞.
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