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We explore lower bounds on the number of axioms needed to prove theorems. We deal
with first-order logic, formalized as a version of the sequent calculus LK introduced by
Gentzen [2] (see also Takeuti [6] for additional background): A sequent is an expression of
the form

Γ ` ∆ (1)

where Γ and ∆ are finite multisets of formulae. The interpretation of (1) is “if all formulae
in Γ hold, then some formula among ∆ holds”. In LK, one starts with axioms and infers
other sequents through various rules of inference. We measure the length of a proof by the
number of sequents that appear in it; we measure the length of a sequent by the number of
symbols in it. It is well known that one cannot give a recursive bound on the least possible
length of a proof of a provable sequent S in terms of the length of S itself. Below, we prove
the following strengthening:

Theorem 1. There is no recursive bound on the least possible number of distinct axioms in
an LK-proof of a sequent in terms of its length.

Here, we do not consider two occurrences of the same axiom A(a) as “distinct,” but we do
consider as distinct different instances of the same axiom, such as A(a) and A(b). Theorem
1 says that as one considers longer sequents, their minimal proofs not only become “longer,”
but also “wider,” and moreover so in a way that cannot be accounted for by the repetition
of axioms.

Intuitionistic logic can be formalized as one of many variants of Gentzen’s LJ, which is
obtained from LK by adding the restriction that all sequents Γ ` ∆ contain at most one
formula on the right-hand side. All our arguments below apply to intuitionistic logic and to
many other related systems. In particular, we have:

1
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Theorem 2. There is no recursive bound on the least possible number of distinct axioms in
an LJ-proof of a sequent in terms of its length.

Among the usual inferences in sequent calculi figures the cut rule:

Γ ` ∆, A A,Γ ` ∆

Γ ` ∆

Gentzen’s Cut-Elimination Theorem says that the cut rule is redundant, however. Cut-free
proofs are useful because they have the subformula property : in a proof of a sequent S with
no instances of the cut rule, one only finds formulae which are substitution instances of
subformulae of formulae in S. This is a desirable property for automated proof search, and
other applicatinos. The main tool in the proof of Theorem 1 is the following lower bound
on the number of axioms in cut-free proofs:

Theorem 3. Let S be a provable LK-sequent of length s. Denote by m the minimal length
of a cut-free LK-proof of S and by α the minimal number of distinct axioms in a cut-free
LK-proof of S. Then

s2

√
1

s4
log2(m) ≤ α.

Finally, we mention another application of Theorem 3. Recall that cut elimination has a
high computational cost. A function f : N→ N is elementarily bounded if it is bounded by
a function of the form

x 7→ 22···
2x

.

An algorithm is elementary if it runs in an amount of time which is elementarily bounded.
A classical theorem due independently to Orevkov [3] and Statman [5] states that there can
be no elementary cut-elimination algorithm for first-order logic. By inspecting Schütte’s
proof of Gentzen’s cut-elimination theorem (see e.g., Schwichtenberg [4]), one sees that this
result is optimal, in the sense that the cut-elimination theorem requires computations as
simple as possible among non-elementary classes. More precisely, it is easily shown that
the cut-elimination theorem is equivalent to the totality of the superexponential function
(which maps a natural number n to the result of applying the exponentiation function
x 7→ 2x n times) over Elementary Arithmetic (EA) (see e.g. Beklemishev [1] for more on
relevant subsystems of arithmetic); however, this leaves open the possibility of strengthening
the result in other directions; namely, Orevkov and Statman’s proofs show that there is a
sequence of first-order sequents the nth of which has a proof of length O(n), but whose
shortest cut-free proofs have lengths which cannot be elementarily bounded. Using Theorem
3 we can strengthen this result by showing that those cut-free proofs must necessarily have
non-elementarily many distinct axioms.

Theorem 4. There is no elementary bound on the least possible number of distinct axioms
of a cut-free LK-proof of a sequent in terms of the least possible length of an LK-proof of the
same sequent.

2
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Abstract

In this report, we study logical systems which represent entailment relations of two
kinds. We extend the approach of finding ’exactly true’ and ’non-falsity’ versions of four-
valued logics that emerged in series of recent works on FDE to the case of infectious ones,
namely to the case of Deutsch’s relevant logic introduced in [8, 9].

A lot of interest was paid to so-called infectious logics in recent years. Besides their philo-
sophical significance (see [19, 13]), a number of important results connected with applications of
infectious logics in the context of the logical programming and proof theory were also obtained
[5, 7, 6, 11, 18]. One interesting four-valued logic can be distinguished among this class of
theories, namely Deutsch’s Sfde [8, 9]. It can be seen as a rival of well-known Dunn-Belnap’s
four-valued logic FDE [10, 3, 4]. The difference lies in the interpretation of the truth value
gaps, as is seen from the matrix below.

We fix a standard propositional language L with an alphabet 〈P,∼,∧,∨, (, )〉, where P =
{p, q, r, s, p1, . . .} is a set of propositional variables. The set F of all L -formulas is defined in a
standard inductive way. The set V4 = {T, B, N, F} contains truth-values which are interpreted as
follows: ‘true’, ‘both’ (i. e. both true and false), ‘none’ (i. e. neither true nor false), and ‘false’,
respectively. A valuation is understood as a mapping from P to V4. It is extended on the set
F according to the logical matrices which are presented below.

Sfde has the matrix 〈V4,∼,∧,∨, {T, B}〉, where:

ϕ ∼
T F

B B

N N

F T

∧ T B N F

T T B N F

B B B N F

N N N N N

F F F N F

∨ T B N F

T T T N T

B T B N B

N N N N N

F T B N F

The entailment relation is defined as preserving designated values.

Definition 1. For each Γ ∪∆ ⊆ F , it holds that:

• Γ |=Sfde
∆ iff for each valuation v, v(γ) ∈ {T, B} (for each γ ∈ Γ) implies v(δ) ∈ {T, B}

(for some δ ∈ ∆);

In this work we introduce two new logics which differ from Sfde by the definition of the
entailment relation. In a manner similar to what has been done by Kapsner1 and Rivieccio in
[14] and Shramko, Zaitsev and Belikov in [16, 17] regarding FDE, we consider the corresponding
counterparts of Sfde. The first one is Setl, the ‘exactly true’ version of Sfde. It differs from
Sfde by the set of designated values: it has {T} instead of {T, B}. The second one is Snfl, the
‘non-falsity’ version of Sfde. It has the following set of designated values: {T, B, N}.

Definition 2. For each Γ ∪∆ ⊆ F , it holds that:

1Pietz – before name changing.
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• Γ |=Setl
∆ iff for each valuation v, v(γ) = T (for each γ ∈ Γ) implies v(δ) = T (for some

δ ∈ ∆);

• Γ |=Snfl
∆ iff for each valuation v, v(γ) ∈ {T, B, N} (for each γ ∈ Γ) implies v(δ) ∈ {T, B, N}

(for some δ ∈ ∆).

We provide a characterization of Setl and Snfl entailment relations with respect to the ones
of K3 [12] and LP [15], respectively.

Theorem 1. Let Γ ∪∆ ⊆ F .
Γ |=Setl

∆ iff Γ |=K3 ∆′ for some ∆′ ⊆ ∆ such that var(∆′) ⊆ var(Γ).

Theorem 2. Let Γ ∪∆ ⊆ F .
Γ |=Snfl

∆ iff Γ′ |=LP ∆ for some Γ′ ⊆ Γ such that var(Γ′) ⊆ var(∆).

As to the main result, we introduce sound and complete Gentzen-style calculi (enjoying
cut-elimination) for Setl and Snfl. Consider the following set of axioms and sequent rules:

• Axioms:

(Ax) ϕ⇒ ϕ (ECQ) ϕ,∼ϕ⇒ (EM) ⇒ ϕ,∼ϕ

• Structural rules:

(W⇒)
Γ⇒ ∆

ϕ,Γ⇒ ∆
(⇒W)

Γ⇒ ∆

Γ⇒ ∆, ϕ
(Cut)

Γ⇒ ∆, ϕ ϕ,Θ⇒ Π

Γ,∆⇒ Θ,Π

• Logical rules:

(∧ ⇒)
ϕ,ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(⇒ ∧)

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ

(∨ ⇒)
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

ϕ ∨ ψ,Γ⇒ ∆
(⇒ ∨)

Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ ∨ ψ

(∼∼ ⇒)
ϕ,Γ⇒ ∆

∼∼ϕ,Γ⇒ ∆
(⇒ ∼∼)

Γ⇒ ∆, ϕ

Γ⇒ ∆,∼∼ϕ

(∼∧ ⇒)
∼ϕ,∼ψ,Γ⇒ ∆

∼(ϕ ∧ ψ),Γ⇒ ∆
(⇒ ∼∧)

Γ⇒ ∆,∼ϕ Γ⇒ ∆,∼ψ
Γ⇒ ∆,∼(ϕ ∧ ψ)

(∼∨ ⇒)
∼ϕ,Γ⇒ ∆ ∼ψ,Γ⇒ ∆

∼(ϕ ∨ ψ),Γ⇒ ∆
(⇒ ∼∨)

Γ⇒ ∆,∼ϕ,∼ψ
Γ⇒ ∆,∼(ϕ ∨ ψ)

• The restricted versions of the logical rules:

(∧H ⇒)
ϕ,ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆

provided that
var({ϕ,ψ}) ⊆ var(∆)

(⇒ ∨B)
Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ ∨ ψ
provided that
var({ϕ,ψ}) ⊆ var(Γ)

Let us make some remarks regarding the rules and sequent calculi already mentioned in the
literature. Let us write SL for the sequent calculus for the logic L.

2
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1. The axiom (Ax), all the structural rules, and the logical rules (∧ ⇒), (⇒ ∧), (∨ ⇒),
(⇒ ∨), (∼∼ ⇒), (⇒ ∼∼), (∼∧ ⇒), (⇒ ∼∧), (∼∨ ⇒), (⇒ ∼∨) form the sequent calculus
for FDE [1, 2].

2. The extension of SFDE by the axiom (ECQ) is the sequent calculus for K3 [1].

3. The extension of SFDE by the axiom (EM) is the sequent calculus for LP [1].

Let us extend this list by the new results.

4. The axioms (Ax) and (ECQ) as well as all the structural rules and the logical rules
(∼∼ ⇒), (⇒ ∼∼), (∧ ⇒), (⇒ ∧), (∨ ⇒), (⇒ ∨B), (∼∧ ⇒), (⇒ ∼∧), (∼∨ ⇒), (⇒ ∼∨)
form the sequent calculus for Setl.

5. The axioms (Ax) and (EM) as well as all the structural rules and the logical rules (∼∼ ⇒),
(⇒ ∼∼), (∧H ⇒), (⇒ ∧), (∨ ⇒), (⇒ ∨), (∼∧ ⇒), (⇒ ∼∧), (∼∨ ⇒), (⇒ ∼∨) form the
sequent calculus for Snfl.

Acknowledgments. This work is supported by the Russian Science Foundation (Project
19-78-00044).
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Abstract

The metagraph model is a kind of “complex networks with emergence” model. To
process and transform metagraph data, the metagraph agents are used. The combination
of the metagraph data model and the metagraph agent model makes it possible to represent
various type systems in the form of a metagraph model.

According to the HOTT book [5]: “the basic concept of type theory, that the term a is of
type A, which is written: a : A. This expression is traditionally thought of as akin to: ‘a is an
element of the set A’. However, in homotopy type theory we think of it instead as: ‘a is a point
of the space A’ .”

We propose the basic ideas of an approach in which a is a subgraph in a complex graph A.
According to [1]: “a complex network is a graph (network) with non-trivial topological features
– features that do not occur in simple networks such as lattices or random graphs but often occur
in graphs modeling of real systems.” The terms “complex network” and “complex graph” are
often used synonymously. According to [2]: “the term ‘complex network,’ or simply ‘network,’
often refers to real systems while the term ‘graph’ is generally considered as the mathematical
representation of a network.” In this paper, we also consider these terms synonymous.

One of the essential kinds of such complex network models is “complex networks with
emergence.” The term “emergence” is used in general system theory. The emergent element
means a whole that cannot be separated into its component parts. As far as the authors know,
currently, there are two “complex networks with emergence” models that exist: hypernetworks
and metagraphs.

The hypernetwork model [4] is mature, and it helps to understand many aspects of complex
networks with an emergence. However, from the authors’ point of view, the metagraph model
is more flexible and convenient than a hypernetwork model for use in information systems [3].

According to paper [3], the metagraph approach may be considered as a higher-level struc-
tural framework for the representation of dynamical complex graph structures.

The metagraph is described as follows: MG = 〈V,MV,E〉, where MG – metagraph; V – set
of metagraph vertices; MV – set of metagraph metavertices; E – set of metagraph edges.

Metagraph vertex is described by set of attributes: vi = {atrk}, vi ∈ V , where atrk –
attribute.

Metagraph edge is described by set of attributes, the source and destination vertices (or
metavertices): ei = 〈vS , vE , {atrk}〉, ei ∈ E, where ei – metagraph edge; vS – source vertex
(metavertex) of the edge; vE – destination vertex (metavertex) of the edge; atrk – attribute.

The metagraph fragment is defined as MGi = {evj}, evj ∈ (V ∪ E ∪MV ), where MGi –
metagraph fragment; evj – an element that belongs to union of vertices, edges and metavertices.

The metagraph metavertex: mvi = 〈{atrk},MGf 〉,mvi ∈ MV , where mvi – metagraph
metavertex; atrk – attribute, MGf – metagraph fragment.

From the general system theory point of view, metavertex is a particular case of manifes-
tation of emergence principle, which means that metavertex with its private attributes and
connections became whole that cannot be separated into its component parts. The example of
metagraph representation is represented in Fig. 1.
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Figure 1: The example of metagraph representation.

The example contains three metavertices: mv1, mv2, and mv3. Metavertex mv1 contains
vertices v1, v2, v3 and connecting them edges e1, e2, e3. Metavertex mv2 contains vertices v4,
v5, and connecting them edge e6. Edges e4, e5 are examples of edges connecting vertices v2–v4
and v3-v5 are contained in different metavertices mv1 and mv2. Edge e7 is an example of the
edge connecting metavertices mv1 and mv2. Edge e8 is an example of the edge connecting
vertex v2 and metavertex mv2. Metavertex mv3 contains metavertex mv2, vertices v2, v3 and
edge e2 from metavertex mv1 and also edges e4, e5, e8 showing emergent nature of metagraph
structure.

Consider the basics of the object-oriented data structures representation using the meta-
graph approach. We review only data structures containing data fields in form name : type :
value where type may be atomic type, complex type or list (collection) type.

The data structure formally may be defined as follows: DS = 〈dsT , DSF 〉 , dsT ∈
TP,DSF =

{
fldi

}
, where DS – data structure; dsT – data structure type belongs set of

types TP ; DSF – set of data structure fields fldi.

The field is defined as follows: fldi = 〈fldN , f ldT , f ldV 〉 , f ldT ∈ TP, where fldN – field
name; fldT – field type belongs set of types TP , fldV – field value of type fldT .

Every type tp belonging to set of types TP must be either atomic type TPA or complex
type TPC or list (collection) type TPL. The atomic type TPA corresponds to the only value.
The complex type TPC contains a set of corresponding field types fldT . The list type TPL is
a collection of elements of any type: (∀tp ∈ TP )tp = TPA|TPC = {fldT } |TPL = [TP ].

The example showing one of the possible cases of metagraph representation of object–
oriented data structure is represented in Fig. 2.

Data structure DS and its corresponding type are represented as a metavertices bound with
edge dsT . The set of data structure fields DSF (also represented as a metavertex) consists of
three fields fld1, fld2 and fld3.

Field fld1 with the name “field1” corresponds to the atomic type “int” with value “1”.
Field fld1 is represented as a metavertex, field name fld1N , and value fld1V are represented as
inner vertices. The field type is represented as edge fld1T bound field metavertex with atomic
type TPA vertex.

Field fld2 with the name “field2” corresponds to the complex type consists of fields “field2 1”
of type “int” with value “2” and “field2 2” of type “string” with value “string2”. Field fld2

is represented as a metavertex, field name fld2N is represented as inner vertex, and value fld2V
is represented as inner metavertex containing metavertices fld2 1 and fld2 2 correspondings
to subfields “field2 1” and “field2 2” with their values. Field fld2 type is represented as edge
fld2T bound field metavertex with complex type TPC metavertex. The TPC metavertex contains

2
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Figure 2: The metagraph representation of object-oriented data structure.

inner vertices corresponding to subfields fld2 1 and fld2 2 types. The edges fld2 1
T and fld2 2

T

bound subfields fld2 1 and fld2 2 metavertices with corresponding subtypes vertices.

Field fld3 with the name “field3” corresponds to the list (collection) type “list of int” with
value “1, 2, 3”. Field fld3 is represented as a metavertex, field name fld3N is represented as inner
vertex and value fld3V is represented as inner metavertex corresponding to the list containing
vertices corresponding to the list items. The field type is represented as edge fld3T bound field
metavertex with list (collection) type TPL metavertex. The TPL metavertex contains inner
vertex corresponds to the list item type. List items bound with list item type with fld3 item

T

edge (shown only for list item “3” in order not to clutter the figure).

The example shows that the object–oriented data structure may be represented using the
metagraph approach without losing detailed information. In conclusion, we note other features
of the metagraph model related to the description of types:

• Types are considered as fragments of a complex graph, in which not only the values of
the vertices are important, but also the relationships between them. This makes the
metagraph model related to the ontological knowledge model.

• To process and transform metagraph data, the metagraph agents are used. The metagraph
agent may be represented as a set of metagraph fragments. The distinguishing feature of

3
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the metagraph agent is its homoiconicity, which means that it can be data structure for
itself.

• The combination of the metagraph data model and the metagraph agent model makes
it possible to represent various type systems in the form of a metagraph model. In this
case, the relationships between the elements of the model are represented explicitly.
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Abstract

In this report, we are going to introduce three recently developed modal multilattice
logics based on MNT4, S4, and S5 in the form of cut-free sequent and hypersequent
calculi as well as in the form of algebraic semantics.

Multilattice logic MLn was designed by Shramko [9] in order to generalize frameworks of
Arieli and Avron’s bilattice logic [1], Shramko and Wansing’s trilattice logic [10], and Zaitsev’s
tetralattice logic [11]. Modal multilattice logic MMLn was developed by Kamide and Shramko
[7]. They expected that this logic will be a multilattice version of S4. However, as argued in
[5, 4], it is not really the case. S4 proves the interdefinability of necessity and possibility modal
operators, while, as follows from the embedding theorem of S4 into MMLn [7], the latter
logic does not have the interdefinability axioms. Moreover, the algebraic structure suggested
by Kamide and Shramko is too weak to be an adequaete semantics for MMLn (see [5] for the
details). The closure and interior operators introduced by Kamide and Shramko are rather
multilattice versions of Tarski’s operators (which are suitable for MNT4), than Kuratowski
ones (which are needed for S4). It has motivated us to present a genuine multilattice version
of S4 based on Kuratowski’s closure and interior operators (we call this logic MMLS4

n ) and a
multilattice version of MNT4 based on Tarski’s operator (we call this logic MMLMNT4

n ).
Moreover, we consider one more logic: MMLS5

n which is a multilattice version of S5. Its
algebraic semantics is based on Halmos closure and interior operators. What is important in
the case of S5 (since we a interested not only in algebraic, but proof-theoretical aspects of
multilattice logics), S5 has an impressive amount of various proof systems. In particular, it
has at least eight various cut-free hypersequent calculi (see [6] for the latest one and [2] for a
survey of the others). This feature of S5 makes it a good candidate for the development on its
base of non-standard modal logics (for example, multilattice modal logics).

Let us introduce the notion of multilattice.

Definition 1. [7, p. 319, Definitions 2.1 and 2.2] A multilattice is a structure Mn = 〈S,61,
. . . ,6n〉, where n > 1, S 6= ∅, 61, . . . ,6n are partial orders such that 〈S,61〉, . . . , 〈S,6n〉 are
lattices with the corresponding pairs of meet and join operators 〈∩1,∪1〉, . . . , 〈∩n,∪n〉 as well
as the corresponding j-inversion operators −1, . . . ,−n which satisfy the following conditions,
for each j, k 6 n, j 6= k, and a, b ∈ S:

a 6j b implies −jb 6j −ja; a 6k b implies −ja 6k −jb; −j−ja = a.

Definition 2 (Ultralogical multilattice). [7, p. 319, Definitions 2.3 and 2.4] A pair 〈Mn,Un〉 is
called an ultralogical multilattice iffMn = 〈S,61, . . . ,6n〉 is a multilattice and Un ( S satisfies
the following conditions, for each j, k 6 n, j 6= k, and a, b ∈ S:

• a ∩j b ∈ Un iff a ∈ Un and b ∈ Un (Un is a multifilter on Mn);

• a ∪j b ∈ Un iff a ∈ Un or b ∈ Un (Un is a prime multifilter on Mn);

• a ∈ Un iff −j −k a 6∈ Un (Un is an ultramultifilter on Mn).
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The formulas of MLn are built from the set P = {pn | n ∈ N} of propositional variables,
negations ¬1, . . . ,¬n, conjunctions ∧1, . . . ,∧n, and disjunctions ∨1, . . . ,∨n. A valuation v is
defined as a mapping from P to S. It is extended into complex formulas as follows: v(¬jφ) =
−jv(φ), v(φ ∧j ψ) = v(φ) ∩j v(ψ), and v(φ ∨j ψ) = v(φ) ∪j v(ψ). The entailment relation is
defined as follows:

Γ |=MLn
∆ iff for each De Morgan ultralogical multilattice 〈Mn,Un〉 and each valuation v, it

holds that if v(γ) ∈ Un (for each γ ∈ Γ), then v(δ) ∈ Un (for some δ ∈ ∆).

In the next definition we adopt the notions of Tarski, Kuratowski, and Halmos closure and
interior operators for the multilattice case (we follow Cattaneo and Ciucci [3]).

Definition 3. We say that a multilattice Mn = 〈S,61, . . . ,6n〉 have Tarski operators iff for
each j 6 n the unary operators of interior Ij and closure Cj can be defined on S and satisfy
the subsequent conditions (a, b, c ∈ S, 1 := c ∪j ¬j¬kc, 0 := c ∩j ¬j¬kc, k 6= j):

Ij(a) 6j a;

Ij(a) = IjIj(a);

Ij(a ∩j b) 6j Ij(a) ∩j Ij(b);
a 6j Cj(a);

Cj(a) = CjCj(a);

Cj(a) ∪j Cj(b) 6j Cj(a ∪j b);
Ij(1) = 1;

Cj(0) = 0;

−jIj(a) = Cj(−ja);

−jCj(a) = Ij(−ja);

−kIj(a) = Ij(−ka);

−kCj(a) = Cj(−ka);

Ij(a) = −j −k Cj(−j −k a);

Cj(a) = −j −k Ij(−j −k a).

Tarski operators are said to be Kuratowski ones iff the subsequent conditions are fulfilled:
Ij(a ∩j b) = Ij(a) ∩j Ij(b) and Cj(a) ∪j Cj(b) = Cj(a ∪j b). Kuratowski operators are said
to be Halmos ones iff the subsequent conditions are fulfilled: Ij(−jIj(a)) = −jIj(a) and
Cj(−jCj(a)) = −jCj(a).

The formulas of modal multilattice logics are built not only from propositional connec-
tives, but necessity operators 21, . . . ,2n and possibility operators ♦1, . . . ,♦n. The entailment
relation in modal multilattice logics is understood in the following way:

Γ |= ∆ in MMLMNT4
n (resp., MMLS4

n , MMLS5
n ) iff for each ultralogical multilattice

〈Mn,Un〉 with Tarski (resp., Kuratowski, Halmos) operators and each valuation v, it holds
that if it holds that if v(γ) ∈ Un (for each γ ∈ Γ), then v(δ) ∈ Un (for some δ ∈ ∆).

Let us introduce a sequent calculus for the logic MMLMNT4
n . By a sequent we under-

stood a pair written as Γ ⇒ ∆, where Γ,∆ are finite sets of formulas. In what follows, the
letter π denotes a set which is either empty or consists of exactly one formula from the list
2jψ,¬j♦jψ,¬k2jψ, where k 6= j; the letter δ denotes a set which is either empty or consists of
exactly one formula from the list ♦jψ,¬j2jψ,¬k♦jψ, where k 6= j. The axioms are as follows:

(A) φ⇒ φ (A¬) ¬jφ⇒ ¬jφ

The structural rules are cut (which is admissible) and weakening. The non-negated logical
rules are as follows:

(∧j ⇒)
φ, ψ,Γ⇒ ∆

φ ∧j ψ,Γ⇒ ∆
(⇒ ∧j)

Γ⇒ ∆, φ Γ⇒ ∆, ψ

Γ⇒ ∆, φ ∧j ψ

(∨j ⇒)
φ,Γ⇒ ∆ ψ,Γ⇒ ∆

φ ∨j ψ,Γ⇒ ∆
(⇒ ∨j)

Γ⇒ ∆, φ, ψ

Γ⇒ ∆, φ ∨j ψ

2
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The jj-negated logical rules are as follows:

(¬j∧j ⇒)
¬jφ,Γ⇒ ∆ ¬jψ,Γ⇒ ∆

¬j(φ ∧j ψ),Γ⇒ ∆
(⇒ ¬j∧j)

Γ⇒ ∆,¬jφ,¬jψ
Γ⇒ ∆,¬j(φ ∧j ψ)

(¬j∨j ⇒)
¬jφ,¬jψ,Γ⇒ ∆

¬j(φ ∨j ψ),Γ⇒ ∆
(⇒ ¬j∨j)

Γ⇒ ∆,¬jφ Γ⇒ ∆,¬jψ
Γ⇒ ∆,¬j(φ ∨j ψ)

(¬j¬j ⇒)
φ,Γ⇒ ∆

¬j¬jφ,Γ⇒ ∆
(⇒ ¬j¬j)

Γ⇒ ∆, φ

Γ⇒ ∆,¬j¬jφ

The kj-negated logical rules as follows:

(¬k∧j ⇒)
¬kφ,¬kψ,Γ⇒ ∆

¬k(φ ∧j ψ),Γ⇒ ∆
(⇒ ¬k∧j)

Γ⇒ ∆,¬kφ Γ⇒ ∆,¬kψ
Γ⇒ ∆,¬k(φ ∧j ψ)

(¬k∨j ⇒)
¬kφ,Γ⇒ ∆ ¬kψ,Γ⇒ ∆

¬k(φ ∨j ψ),Γ⇒ ∆
(⇒ ¬k∨j)

Γ⇒ ∆,¬kφ,¬kψ
Γ⇒ ∆,¬k(φ ∨j ψ)

(¬k¬j ⇒)
Γ⇒ ∆, φ

¬k¬jφ,Γ⇒ ∆
(⇒ ¬k¬j)

φ,Γ⇒ ∆

Γ⇒ ∆,¬k¬jφ

The non-negated modal rules are as follows:

(2j ⇒)
φ,Γ⇒ ∆

2jφ,Γ⇒ ∆
(⇒ ♦j)

Γ⇒ ∆, φ

Γ⇒ ∆,♦jφ
(⇒ 2j)

π ⇒ ♦jΛ, φ

π ⇒ ♦jΛ,2jφ
(♦j ⇒)

φ,2jΛ⇒ δ

♦jφ,2jΛ⇒ δ

The jj-negated modal logical rules:

(⇒ ¬j2j)
Γ⇒ ∆,¬jφ

Γ⇒ ∆,¬j2jφ
(¬j♦j ⇒)

¬jφ,Γ⇒ ∆

¬j♦jφ,Γ⇒ ∆

(¬j2j ⇒)
¬jφ,2jΛ⇒ δ

¬j2jφ,2jΛ⇒ δ
(⇒ ¬j♦j)

π ⇒ ♦jΛ,¬jφ
π ⇒ ♦jΛ,¬j♦jφ

The kj-negated modal logical rules:

(¬k2j ⇒)
¬kφ,Γ⇒ ∆

¬k2jφ,Γ⇒ ∆
(⇒ ¬k♦j)

Γ⇒ ∆,¬kφ
Γ⇒ ∆,¬k♦jφ

(⇒ ¬k2j)
π ⇒ ♦jΛ,¬kφ
π ⇒ ♦jΛ,¬k2jφ

(¬k♦j ⇒)
¬kφ,2jΛ⇒ δ

¬k♦jφ,2jΛ⇒ δ

A sequent calculus for MMLS4
n [4] is obtained from the one for MMLMNT4

n by
the replacement in each of modal rule the letters δ and π, respectively, with the sets
{2jΓ1,¬j♦jΓ2,¬k2jΓ3} and {♦j∆1,¬j2j∆2,¬k♦j∆3} (where k 6= j) as well as 2jΛ and
♦jΛ, respectively, with {2jΛ1,¬j♦jΛ2,¬k2jΛ3} and {♦jΛ1,¬j2jΛ2,¬k♦jΛ3}. Because of

the lack of space, we are not able to present here a hypersequent calculus for MMLS5
n based

on Restall’s hypersequent calculus for S5 [8], but the reader may find it in [4]. All the calculi
for modal multilattice logics are show to be sound, complete, and cut-free.

Acknowledgments. The report of Yaroslav Petrukhin supported by the grant from the Na-
tional Science Centre, Poland, grant number DEC-2017/25/B/HS1/01268.
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Abstract

It is well–known that extending a sequent calculus of positive relevant logic, for example
Dunn’s LK+ [4], so as to handle a negation is not trivial. Belnap [1], solved this problem, using
a concept of ’Display logic’, but by going outside the standard vocabulary for R. Namely, to
the standard {→,∧,∨,∼} he added not only, t and ◦, which are also needed in LK+, but T
and ∼b, where T is the disjunction of all propositions and ∼b is Boolean negation. Another
solution of this problem was presented by Brady [3], who in addition to t and ◦, used also the
classical negation, denoted by −, and additional structural connective ?, corresponding to ⊗,
defined by α ⊗ β = α ∧ − ∼ β, in order to set up the left–handed sequent system with signed
formulae, for R. Significantly simpler sequent calculus was presented by Bimbó and Dunn [2],
but only for the fragment Rt

→ of R.
We have tried to set up a sequent system for R, less entangled than Brady’s or Belnap’s.

Bearing in mind that RW allows a simple gentzenization on the standard vocabulary, GRW
[6], we formulate the system GR by adding the intensional contraction rule

` Γ[Π; Π]

Γ[Π]
(WI)

to GRW . We prove that GR presents the sequent calculus for R. Unfortunately, the rule of
cut cannot be eliminated in GR [7].
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The Lambek calculus [9] was introduced as a logical framework for describing natural lan-
guage syntax. In order to be useful for such applications, the Lambek calculus is highly sub-
structural, including neither contraction, nor weakening, nor permutation structural rules. The
only structural rule kept is implicit associativity. From a modern point of view [1], the Lambek
calculus can be considered as a non-commutative intuitionstic version of Girard’s linear logic [3].
Thus, the Lambek can be further extended by linear logic connectives, such as additives and
(sub)exponentials.

The derivability problem for the basic Lambek calculus is NP-complete [13]. The
multiplicative-additive Lambek calculus (viz., the Lambek calculus extended with additive con-
junction and disjunction, denoted by MALC) is PSPACE-hard [4, 6]. Extending the Lambek
calculus with an exponential modality yields an undecidable (Σ0

1-complete) system [10]. A more
fine-grained system can be obtained by extending MALC with a family of structural modalities,
called subexponentials, cf. [11] Such a non-commutative version of the subexponential extension
of linear logic was studied by Kanovich et al. [5]. The Lambek calculus with subexponentials is
also undecidable, provided that at least one of the subexponentials allows the rule of non-local
contraction.

Action logic, or the Lambek calculus with additives further extended with iteration (Kleene
star), originates in the works of Pratt [14] and Kozen [7]. Buszkowski and Palka [2, 12] con-
sidered a stronger version of action logic, where iteration is governed by an ω-rule instead of
inductive-style axioms. This system is called infinitary action logic. Buszkowski and Palka
proved that it is Π0

1-complete (thus, in particular, not computably enumerable).
We study an extension of MALC with both Kleene star and a family subexponentials. This

extension is called infinitary action logic with exponentiation and denoted by !ACTω.
Formulae of !ACTω are built from propositional variables (Var = {p1, p2, p3, . . .}) and the

multiplicative unit (truth) constant 1 using the following binary connectives:

• multiplicative connectives: left implication (, right implication (, and product (multi-
plicative conjunction) ⊗;

• additive connectives: conjunction & and disjunction ⊕

and the following unary connectives:

• iteration (Kleene star) ∗;

• subexponentials: we fix a partially ordered set 〈I,�〉 of subexponential labels, and three
subsets of I, called W, C, and E , upwardly closed w.r.t. �
For each s ∈ I we introduce a unary connective !s.

Intuitively, W, C, and E mean the sets of subexponentials for which we allow weakening,
contraction, and permutation (exchange) rules respectively.

The axioms and rules of !ACTω are as follows:

A ` A (id)
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Π→ A Γ, B,∆ ` C
Γ,Π, A(B,∆ ` C (( `)

A,Π ` B
Π ` A(B

(`()

Π ` A Γ, B,∆ ` C
Γ, B

(

A,Π,∆ ` C ( (`)
Π, A ` B

Π ` B (

A
(` ()

Γ, A,B,∆→ C

Γ, A⊗B,∆ ` C (⊗ `) Γ ` A ∆ ` B
Γ,∆ ` A⊗B (` ⊗)

Γ,∆→ C

Γ,1,∆→ C
(1 `) ` 1

(` 1)

Γ, A1,∆ ` C Γ, A2,∆ ` C
Γ, A1 ⊕A2,∆ ` C

(⊕ `)
Π→ Ai

Π→ A1 ⊕A2
(` ⊕)i, i = 1, 2

Γ, Ai,∆→ C

Γ, A1 &A2,∆→ C
(& `)i, i = 1, 2

Π→ A1 Π→ A2

Π→ A1 &A2
(` &)

(Γ, An,∆ ` C)n∈N
Γ, A∗,∆ ` C (∗ `)ω

Π1 → A . . . Πn ` A
Π1, . . . ,Πn ` A∗

(` ∗)n, n > 0

Γ, A,∆ ` C
Γ, !sA,∆ ` C

(! `)
!s1A1, . . . , !

snAn ` B
!s1A1, . . . , !

snAn ` !sB
(` !), si � s

Γ, A,∆→ C

Γ, !wA,∆→ C
(weak), w ∈ W

Γ,Φ, !eA,∆ ` C
Γ, !eA,Φ,∆ ` C

(perm)1, e ∈ E
Γ, !eA,Φ,∆ ` C
Γ,Φ, !eA,∆ ` C

(perm)2, e ∈ E

Γ, !cA,Φ, !cA,∆ ` C
Γ, !cA,Φ,∆ ` C

(ncontr)1, c ∈ C
Γ, !cA,Φ, !cA,∆ ` C

Γ,Φ, !cA,∆ ` C
(ncontr)2, c ∈ C

Π ` A Γ, A,∆ ` C
Γ,Π,∆ ` C (cut)

Since (ncontr) and (weak) derive (perm), we explicitly postulate W ∩ C ⊆ E .
Derivations in !ACTω are trees which can be infinitely branching, but should be well-founded

(that is, infinite paths are not allowed).
The cut rule is eliminable, which is established by a juxtaposition of two arguments. The

first one is cut elimination in infinitary action logic, performed by Palka [12] using transfinite
induction. The second one is cut elimination is the subexponential extension of MALC by
Kanovich et al. [5], using a version of Gentzen’s mix rule.

Our main result is that a combination of exponential and Kleene star yields a system of
hyperarithmetical complexity:

2
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Theorem 1. If C 6= ∅, then the derivability problem in !ACTω is Π1
1-complete.

The proof of the lower bound, Π1
1-hardness, is based on encoding Kozen’s result on the

complexity of Horn theories for *-continuous Kleene algebras [8]. The upper bound is established
by quite a general argument, based on the form of the rules and derivations in the calculus.

Another measure of complexity of !ACTω is its closure ordinal. The closure ordinal is defined
as follows. Let D be the immediate derivability operator. The D operator is a mapping of sets
of sequents into sets of sequents. For a set of sequents S and a sequent s we have s ∈ D(S) if
and only if either s ∈ S, or s is an axiom, or s is obtained by one of the inference rules from
sequents belonging to S.

By Dα, for an ordinal α, we denote the α-th transfinite iteration of D . The closure ordinal
is the smallest ordinal α such that Dα(∅) = Dα+1(∅). The existence of such α follows from
the Knaster–Tarski theorem.

We compute the closure ordinal for !ACTω:

Theorem 2. If C 6= ∅, the closure ordinal for !ACTω (for the D operator defined above using
axioms and rules of !ACTω) is ωCK

1 , that is, the smallest non-computable ordinal, known as the
Church–Kleene ordinal.

Thus, we have established exact complexity bounds for !ACTω, both in terms of the com-
plexity class for the derivability problem and in terms of the closure ordinal of the immediate
derivability operator. Complexity of naturally arising fragments of !ACTω, with C = ∅ (that is,
where no subexponential allows contraction) or where !c, c ∈ C, cannot be applied to formulae
containing the Kleene star, is left for future research.
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A Labelled Sequent Calculus for HYPE

Abstract

In this work, we will present and discuss a calculus for HYPE’s system as developed
in [Lei18]. G3HYPE is a labelled calculus built to provide a proof system for HYPE’s
model theory, as it allows us to express in syntactic terms statements concerning not only
formulas in the language, but possible intercurrent relations between different states as
well. Structural rule admissibility will be shown to hold for the system, along with some
of the most important metatheorems. Possible recovery of different logics in the system
will be finally shown.

This work is devoted to finding a proper sequent-style calculus reflecting most of the attrac-
tive features that HYPE semantics display by the use of modern proof theoretic techniques.

HYPE is a system of non-classical logic developed in [Lei18]. Philosophical and technical
motivation for the system are manifold and will not be discussed in length here. They include,
and are not limited to, the study of an easily extendible semantic framework useful for specifying
different logics, for applications in the field of semantic paradoxes, and for a possible background
system for hyperintensional operators. While some of this research has already been hinted at
or partially developed in [Lei18], other works are, at the time of writing, in development.

Our aim however will not only consist in offering a completion of [Lei18] from a proof
theoretical side. We will in fact try to provide and argue for new syntactic grounds on which a
study of HYPE’s characteristic features can be brought on.

Taken as a logic per se, HYPE’s official one,1 is not difficult to spell out starting from
the axioms provided in [Lei18]. This system, while possessing the advantage of being simple
to define, seems to be not expressive enough to represent the possibility provided by such a
rich semantics, which includes relations typical of mereological systems (fusion), combined with
star states and (in)compatibility relations. Moreover, the strategy adopted for proving (strong)
completeness through the construction of a canonical model is particularly involving. As we
shall see, it seems to lead to an inexact result, namely the fact that the axiomatic system
presented in [Lei18] is complete for the variable domain variant of HYPE.2 For these reasons,
we will introduce a different kind of framework, namely a linguistic extension of a G3-style
classical sequent calculus. With such system we aim at providing a Classical logic base calculus
for HYPE’s characteristic semantic clauses and model-theoretic relations by representing them
in the language of the derivation. To this end, a system of labels in the style of [Neg05] and
[DN12] is employed. Similarly to labelled calculi in Modal and Intuitionistic logics, variable
and constant labels will be used to label formulas.

This permits us to obtain a calculus G3HYPE with an algorithmic Cut admissibility pro-
cedure. In this case, the metatheorems will be proved in a simple and direct way in order to
show such closeness to the actual semantics from one side and the benefit of the employed proof
theoretic machinery from the other. The completeness proof will indeed be shown by the simple
construction of a proof-search reduction tree, by generalising the method of Schütte-Takeuti
[Tak13]. By the internalisation of HYPE’s first-order semantics, however, we can actually
achieve more, namely, we will obtain a system that enables us to reason with HYPE’s model

1There are many other ways in which HYPE semantics is sharpened. We are going to consider the ones
specified in [Lei18] for the propositional fragment

2In order to obtain the constant domain one, substitution of logical equivalents must be assumed in the
axiomatic system, as it is not a derivable property of it.
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theory, and in which many semantic observations made in [Lei18] can be derived in the system
without ad-hoc additions.

Finally, we would like to remark that the logics recaptured by extensions of HYPE by im-
posing restriction on the models can therefore be recaptured in the proof system by formalising
such restriction as rules over the relations between the labels. This logics include Classical logic,
Intuitionistic one, First Degree Entailment (FDE) [Bel77], Strong Kleene logic (K3) [Kle38],
Logic of Paradox (LP) [Pri79] and therefore, as we will show, Strict-Tolerant logic (ST), that
is, Classical logic minus Cut [CERvR12].
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Abstract

In this work we present a methodology to construct globally sound but possibly locally
unsound analytic calculi for partial theories of Henkin quantifiers. It is demonstrated that
locally sound analytic calculi do not exist for any reasonable fragment of the full theory of
Henkin quantifiers.

Henkin introduced the general idea of dependent quantifiers extending classical first-order
logic [4], cf. [5] for an overview. This leads to the notion of a partially ordered quantifier with
m universal quantifiers and n existential quantifiers, where F is a function that determines for
each existential quantifier on which universal quantifiers it depends (m and n may be any finite
number). The simplest Henkin quantifier that is not definable in ordinary first-order logic is
the quantifier QH binding four variables in a formula. A formula A using QH can be written

as AH =

(
∀x ∃u
∀y ∃v

)
A(x, y, u, v). This is to be read ”For every x there is a u and for every y

there is a v (depending only on y)” s.t. A(x, y, u, v). If the semantical meaning of this formula is
given in second-order notation, the above formula is semantically equivalent to the second-order
formula ∃f∃g∀x∀yA(x, y, f(x), g(y)), where f and g are function variables. Systems of partially
ordered quantification are intermediate in strength between first-order logic and second-order
logic. Similar to second-order logic, first-order logic extended by QH is incomplete [7]. In proof
theory incomplete logics are represented by partial proof systems, c.f. the wealth of approaches
dealing with partial proof systems for second-order logic. However, in contrast to second-order
logic only a few results deal with the proof theoretic aspect of the use of branching quantifiers
in partial systems.1

The first step in this work is to establish an analytic function calculus with a suitable partial
Henkin semantics. We choose a multiplicative function calculus based on pairs of multisets as
sequents corresponding to term models and refer to this calculus as LF. Besides the usual
propositional inference rules of LK the quantifier inference rules of LF are

• ∀-introduction for second-order function variables

A(t(t∗1, . . . , t
∗
n))Γ→ ∆ ∀nl∀f∗A(f∗(t∗1, . . . , t
∗
n)),Γ→ ∆

t is a term and t∗1, . . . , t
∗
n are semi-terms.

Γ→ ∆, A(f(t∗1, . . . , t
∗
n))

∀nrΓ→ ∆,∀f∗A(f∗(t∗1, . . . , t
∗
n))

1The most relevant paper is the work of Lopez-Escobar [6], describing a natural deduction system for QH .
The setting is of course intuitionistic logic. The formulation of the introduction rule for QH corresponds to the
introduction rule right in the sequent calculus developed in this paper. The system lacks an elimination rule.
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f is a free function variable (eigenvariable) of arity n which does not occur in the lower
sequent and t∗1, . . . , t

∗
n are semi-terms.

• ∃-introduction for second-order function variables

A(f(t∗1, . . . , t
∗
n)),Γ→ ∆ ∃nl∃f∗A(f∗(t∗1, . . . , t
∗
n)),Γ→ ∆

f is a free function variable (eigenvariable) of arity n which does not occur in the lower
sequent and t∗1, . . . , t

∗
n are semi-terms.

Γ→ ∆, A(t(t∗1, . . . , t
∗
n))

∃nrΓ→ ∆,∃f∗A(f∗(t∗1, . . . , t
∗
n))

t is a term and t∗1, . . . , t
∗
n are semi-terms.

LF is obviously cut-free complete w.r.t. term models by the usual Schütte argument and admits
effective cut-elimination. The question arises why not to be content with the second-order
representation of Henkin quantifiers. The answer is twofold: First of all, a lot of information
can be extracted from cut-free proofs but only on first-order level. This includes (i) suitable
variants of Herbrand’s theorem with or without Skolemization, (ii) the construction of term-
minimal cut-free proofs and (iii) the development of suitable tableaux provers. (i) fails due
to the failure of second-order Skolemization, (ii) and (iii) fail because of the undecidability of
second-order unification and the impossibility to obtain most general solutions.

Therefore, we construct the analytic calculus LH by deriving first-order rules from second-
order rule macros. The language LH of LH is based on the usual language of first-order logic
with exception that the quantifiers are replaced by the quantifier QH . With exception of the
quantifier-rules, LH corresponds to the calculus LK in a multiplicative setting. The idea is
to abstract the eigenvariable conditions from the premises of the inference macros in LF. To
obtain LH, we replace the quantifier rules of LK by

Γ→ ∆, A(a, b, t1, t2)
QHr

Γ→ ∆,

(
∀x ∃u
∀y ∃v

)
A(x, y, u, v)

a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t1 and t2 are
terms s.t. t1 must not contain b and t2 must not contain a.2

A(t′1, t
′
2, a, b),Π→ Γ

QHl1(
∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π→ Γ

where a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t′1, t′2
are terms s.t. b does not occur in t′2 and a and b do not occur in t′1.

A(t′1, t
′
2, a, b),Π→ Γ

QHl2(
∀x ∃u
∀y ∃v

)
A(x, y, u, v),Π→ Γ

2Note that such a rule was already used by Lopez-Escobar in [6].
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where a and b are eigenvariables (a 6= b) not allowed to occur in the lower sequent and t′1, t′2
are terms s.t. a does not occur in t′1 and a and b do not occur in t′2. 3

Cuts in LH can be eliminated following Gentzen’s procedure and we obtain a midse-
quent theorem. However, LH is incomplete: Assume towards a contradiction the sequent(
∀x ∃u
∀y ∃v

)
A(x, y, u, v) →

(
∀x ∃u
∀y ∃v

)
(A(x, y, u, v) ∨ C) is provable. Then it is provable

without cuts. A cut-free derivation after deletion of weakenings and contractions has the form:

A(a, b, c, d)→ A(a, b, c, d)

A(a, b, c, d)→ A(a, b, c, d) ∨ C

...

Due to the mixture of strong and weak positions in QH none of QHr , QHl1
, QHl2

can be applied.
The inherent incompleteness of LH even for trivial statements is a consequence of the fact

that QH represents a quantifier inference macro combining quantifiers in a strong and a weak
position. This phenomenon occurs already on the level of usual first-order logic when quantifiers
defined by macros of quantifiers such as ∀x∃y are considered [2].

The solution is to consider sequent calculi with concepts of proof which are globally but
not locally sound, similar to [1]. This means that all derived statements are true but that
not every sub-derivation is meaningful. We obtain for LF and LH globally, but possibly
locally unsound calculi LF++ and LH++ by weakening the eigenvariable conditions and show
soundness, completeness and cut-elimination for the novel calculus LH++ [3]. The main results
are4:

Lemma 1. An LH++-derivation ϕ with cuts can be immediately transformed into an LF++-
derivation ϕ′ with cuts.

Lemma 2. An LF++-derivation ϕ where the end-sequent contains only quantifiers in blocked
distinct sequences ∃f∃g∀x∀y can be transformed into a cut-free LF++-derivation ϕ′ where the
quantifiers in the sequence ∃f∃g∀x∀y belonging to a block in the end-sequent are inferred im-
mediately one after the other.

Lemma 3. A cut-free LF++-proof ϕ with blocked quantifier inferences ∃f∃g∀x ∀y from atomic
axioms and only such blocks of quantifiers in the end-sequent can be transformed into a cut-free
LH++-proof ϕ′ from atomic axioms.

Theorem 1. LH++ is sound, cut-free complete w.r.t. the intended semantics and admits an
effective cut-elimination.

It is obvious that the methodology developed in this work can be extended to arbitrary
Henkin quantifiers, however not to arbitrary macros of quantifiers, where repeated alternations
between strong and weak quantifiers are allowed.
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Abstract. 

Knowledge representation is a popular research field in IT. As mathematical 

knowledge is most formalized, its representation is important and interesting. 

Mathematical knowledge consists of various mathematical theories. In this pa-

per we present a deductive system that derives mathematical notions, axioms 

and theorems of elementary set theory. All these notions, axioms and theorems 

can be considered a small mathematical theory. 

Keywords: Semantic network · semantic net· mathematical logic · set theory · 

axiomatic systems · formal systems · semantic web · prover · ontology · 

knowledge representation · knowledge engineering · automated reasoning 

1 Introduction 

The term "knowledge representation" usually means representations of knowledge 

aimed to enable automatic processing of the knowledge base on modern computers, in 

particular, representations that consist of explicit objects and assertions or statements 

about them. We are particularly interested in the following formalisms for knowledge 

representation: 

1. First order predicate logic [1, 4]. 

2. Deductive (production) systems. In such a system there is a set of initial objects, 

rules of inference to build new objects from initial ones or ones that are already build, 

and the whole of initial and constructed objects [5]. 

In this paper we describe a part of the project and a part of the interactive computer 

application for automated building of mathematical theories. 

Studies in this area are mainly connected writing programs for automatic theorem 

proving, the development of the semantic Internet, ontologies. 

First-order theorem proving is one of the most mature subfields of automated theo-

rem proving. On the other hand, it is still semi-decidable, and a number of sound and 

complete calculi have been developed, enabling fully automated systems. More ex-

pressive logics, such as higher order logics, allow the convenient expression of a wid-

er range of problems than first order logic, but theorem proving for these logics is less 

well developed. 
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In our project, unlike other provers, where it is necessary to translate the theorem 

and the axioms needed for its proof in a formal language and directly to the internal 

language of the system itself, on the contrary, a formal written axioms and theorems 

are generated automatically by a computer program. Using the language of set theory 

and axiomatic set theory can be constructed a significant part of mathematics. That is 

why as the original object taken membership predicate. In this paper, therefore, is 

considered as an example provide you with the basic concepts of set theory (empty 

set, subset, membership, inclusion, intersection, union, powerset, Cartesian product). 

With the help of program MathSem one can build the axioms and theorems of set 

theory. In the future, a deductive system is expected to bring and represent in the form 

of a semantic net framework of set theory, Euclidean geometry, group theory and 

graph theory. 

2 Description of the Project 

We define a formal language (close to first-order predicate logic), and a deductive 

(production) system that builds expressions in this language. There are rules for build-

ing new objects from initial (atomic) ones and the ones already built. Objects can be 

either statement (predicates), or definitions (these could be predicates or truth sets of 

predicates). The membership predicate is taken as the atomic formula. Rules for 

building new objects include logical operations (conjunction, disjunction, negation, 

implication), adding a universal or existential quantifier, and one more rule: building 

the truth set of a predicate. One can consider symbols denoting predicates and sets, 

and also the predicates and sets themselves (when an interpretation or model is fixed). 

One more rule allows substitution of an individual variable or a term for a variable. 

Further, when we have built a new formula, we can simplify it using term-rewriting 

rules and logical laws (methods of automated reasoning). 

In order to prove theorems one can apply well-known methods of automated rea-

soning (resolution method, method of analytic tableaux, natural deduction, inverse 

method), as well as new methods based on the knowledge of «atomic» structure of the 

formula (statement) that we are trying to prove. For a new formula written in the for-

mal language a human expert (mathematician) can translate it into «natural» language 

(Russian, English etc.), thus we obtain a glossary of basic notions of the system. More 

complicated formulae are translated into natural language using an algorithm and the 

glossary. The deductive system constructed here is based on classical first-order pred-

icate logic. The initial object is the membership predicate, and the derivations result 

into mathematical notions and theorems. The computer program (algorithm) builds 

formulae from atomic ones (makes the semantic net of the derivation).  

3 Software Description 

The MathSem program is being written by Vitaliy Tatarinsev. 
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In this program, complicated formulae are built from atomic ones «manually». The 

formulae built can be saved in a Word file along with their descriptions. One can also 

upload formulae from a Word file. Below one can find an example of building circa 

30 formulae. Notably, all the signature of set theory is built from formulae with length 

(number of atomic formulae) not greater than two. 
N  Formula Notation Symbol Natural language 

1 [  ( x0A0 )  ] P0 ( x0 , A0 )    
2 [  ( x0A1 )  ] P0 ( x0 , A1 )    
3 [  ( x1A0 )  ] P0 ( x1 , A0 )    
4 [  ( x1A1 )  ] P0 ( x1 , A1 )    
5 [  ( x0A0 )  ] P1 ( x0 , A0 )    
6 (x0) [  ( x0A0 )  ] P2 ( A0 )  A0=I A0 -universe 

7 (A0) [  ( x0A0 )  ] P3 ( x0 )    
8 (x0) [  ( x0A0 )  ] P4 ( A0 )  A0 A0 not empty set 

9 (A0) [  ( x0A0 ) ] P5 ( x0 )    

10 { x0 |  P0 ( x0 , A0 ) } M0 ( A0 )  A0 A0 

11 { A0 |  P0 ( x0 , A0 ) } R0 ( x0 )   Ri are sets consisting 

of sets (comments) 

12 [ ( ( x0A0 )  ( x0A1 ) ) ] P6 ( x0 , A0 , A1 )    
13 [ ( ( x0A0 )  ( x0A1 ) ) ] P7 ( x0 , A0 , A1 )    
14 [  ( x1A0 )  ] P8 ( x1 , A0 )    
15 [  ( x1A1 )  ] P9 ( x1 , A1 )    
16 [  ( x0A1 )  ] P10 ( x0 , A1 )    

17 [  (  ( x0A0 )  ( x1A0 )  )  ] P11 ( x0 , A0 , x1 )    
18 [  (  ( x0A0 )  ( x0A1 )  )  ] P12 ( x0 , A0 , A1 )    
19 { x0 |  P12 ( x0 , A0 , A1 )  } M1 ( A0 , A1 )  A0 \A1 difference of A0 and 

A1 

20 { x0 |  P6 ( x0 , A0 , A1 )  } M2 ( A0 , A1 )  A0A1 intersection of A0 and 

A1 

21 { x0 | P1 ( x0 , A0 )  } M3 ( A0 )   the complement to A0 

22 { x0 | P7 ( x0 , A0 , A1 )  } M4 ( A0 , A1 )  A0A1 union of A0 and A1 

23 [  (  ( x0A0 ) ( x0A1 )  )  ] P13 ( x0 , A0 , A1 )    
24 { x0 |  P13 ( x0 , A0 , A1 )  } M5 ( A0 , A1 )    
25 [  (  ( x0A0 )  ( x1A1 )  )  ] P14 ( x0 , A0 , x1 , 

A1 )  
  

26 {  x0 , x1 | P14 ( x0, A0 ,x1 ,A1 ) } M6 ( A0 , A1 )  A0 x A1 Cartesian product of 
A0 and A1 

27 (x0) [ ( ( x0A0 ) ( x0A1 ) ) ] P15 ( A0 , A1 )  A1A0 A1 subset A0 

28 { A1 |  P15 ( A0 , A1 )  } R1 ( A0 )   the powerset of A0 

29 (x0)  (A0) [  ( x0A0 ) ] P16( )   TRUE A0={ x0} 

Table 1.  

References 

1. Vereshchagin N. K., Shen A.: Languages and Calculi (in Russian), MCCME, Moscow 

(2008). 

29



2. Vagin V. N., Golovina E. Yu., Zagoryanskaya A. A., Fomina M. V.:  Exact and Plausible 

Reasoning in Intellectual Systems (in Russian). Fizmatlit, Moscow, (2004).. 

3. Luxemburg A. A.: Automated Construction of Mathematical Theories (in Russian). Edito-

rial URSS, Moscow (2005) 

4. Robinson J.A., Voronkov A. (Eds.): Handbook of Automated Reasoning (in 2 volumes). 
Elsevier and MIT Press (2001) 

5. Maslov S. Yu.: Theory of Deductive Systems and its Applications (in Russian). Radio i 

svyaz, Moscow (1986) 

6. VUE http://vue.tufts.edu/about/index.cfm 

 

30

http://vue.tufts.edu/about/index.cfm


LINDSTR�OM THEOREM

FOR PREDICATE INTUITIONISTIC LOGIC

GRIGORY OLKHOVIKOV

The talk will be devoted to the explanation of the main result of [4] (joint work
with G. Badia and R. Zoghifard). The paper extends the main result of [1] to several
variants of �rst-order intuitionistic logic. More precisely, we consider the following
family of six logics which we call standard intuitionistic logics, StIL for short:

• Intuitionistic �rst-order logic without equality;
• Intuitionistic �rst-order logic with extensional equality;
• Intuitionistic �rst-order logic with intensional equality;
• Intuitionistic logic of constant domains without equality;
• Intuitionistic logic of constant domains with extensional equality;
• Intuitionistic logic of constant domains with intensional equality.

We supply these logics with the semantics in style of `modi�ed Kripke semantics' of [2,
Sect 5.3] and de�ne, for every system in StIL, an appropriate intuitionistic variant of
�rst-order bisimulation (initially introduced in [3] for the intuitionistic �rst-order logic
without equality under the name of �rst-order asimulation).

We then de�ne the notion of abstract intuitionistic logic L as a quadruple of the
form (StrL, L, |=L,�L), where StrL is a function returning, for every signature Θ, the
class of L-admissible pointed Θ-models StrL(Θ) and L is a function returning the set
L(Θ) of Θ-sentences in L; next, |=L is a class-relation such that, if α |=L β, then there
exists a signature Θ such that α ∈ StrL(Θ), and β ∈ L(Θ); informally this is to mean
that β holds in α. The relation |=L is only assumed to be de�ned (i.e. to either hold
or fail) for the elements of the class

⋃
{(StrL(Θ), L(Θ)) | Θ is a signature} and to be

unde�ned otherwise.
The fourth element in our quadruple, �L, is then a function, returning, for every

(M, w) ∈ StrL(Θ), for every tuple c̄ of pairwise distinct constants outside Θ, and for
every tuple ā of objects in (M, w) a non-empty set of admissible constant expansions
of a certain family of submodels of M by this new tuple of constants in such a way
that ā ends up being exactly the tuple of their values at (M, w).

In order for such a quadruple L to count as an abstract intuitionistic logic, several
groups of additional requirements need to be satis�ed, and we will o�er a detailed
formulation and motivation of these requirements in the talk.

We further de�ne that, given a pair of abstract intuitionistic logics L and L′, we say
that L′ expressively extends L and write L v L′ i� all of the following holds:

• StrL = StrL′ ;
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• If (M, w) ∈ StrL(Θ), c̄ is a tuple of pairwise distinct constants outside Θ, and ā
is an appropriate tuple of objects, then we have (M, w)�L′(c̄n/ān) ⊆ (M, w)�L(c̄n/ān)

• For every φ ∈ L(Θ) there exists a ψ ∈ L′(Θ) such that for every (M, w) ∈ StrL(Θ)
we have:

M, w |=L φ⇔M, w |=L′ ψ.

If both L v L′ and L′ v L hold, then we say that the logics L and L′ are expressively

equivalent and write L ./ L′.
We show how the logics in StIL can be represented as abstract intuitionistic logics

in the form outlined above and consider abstract extensions of these logics. Some of
these extensions enjoy useful model-theoretic properties among which the following
three are of particular interest: (1) Compactness, (2) Tarski Union Property, and (3)
preservation under L-asimulations for some L ∈ StIL.

Our main result is then that no standard intuitionistic logic has proper extensions
that display the combination of all the three useful properties mentioned above. In
other words, we establish the following:

Theorem 1. Let L be an abstract intuitionistic logic and let L′ ∈ StIL. If L′ v L and

L is preserved under L′-asimulations, compact, and has Tarski Union Property, then

L′ ./ L.

Acknowledgments. Grigory Olkhovikov is supported by Deutsche Forschungsgemein-
schaft (DFG), Project OL 589/1-1.
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A joint logic of problems and propositions

Onoprienko A.A.

Abstract
We consider the joint logic of problems and propositions suggested by S. A. Melikhov. We

prove that its propositional part is complete with respect to models constructed by S. Artemov
and T. Protopopesku for intuitionistic epistemic logic. We also show that this logic conservatively
extends the intuitionistic epistemic logic IEL+.

In a commentary to his collected works [2], Kolmogorov remarked that his paper [3] «was written
in hope that with time, the logic of solution of problems [i.e., intuitionistic logic] will become a
permanent part of a [standard] course of logic. A unified logical apparatus was intended to be created,
which would deal with objects of two types — propositions and problems.» Melikhov [5] construct a
formal system QHC (a joint logic of problems and propositions) which contain two types of variables:
problem and proposition. Formulas of QHC are built from variables by using standart classical and
intuitionistic connectives ∨,∧,¬,→, modalities ! and ? and quantifiers ∀,∃.
All propopositions (all problems) satisfy all inference rules and axioms schemes of classical (intuitionistic)
predicate logic. Formulas of this two types are interconnected of two modalities. The modality ! inputs
a proposition 𝑝 and outputs a problem !𝑝 «Find a proof of 𝑝». The modality ? inputs a problem 𝛼
and outputs a proposition ?𝛼 «There exists a solution of 𝛼». There are following axioms schemes
and inference rules for modalities:

1) !(𝑝 → 𝑞) → (!𝑝 →!𝑞); 2) ?(𝛼 → 𝛽) → (?𝛼 →?𝛽);

3)
𝑝

!𝑝
; 4)

𝛼

?𝛼
;

5) ?!𝑝 → 𝑝; 6) 𝛼 →!?𝛼; 7) ¬!0.

Melikhov examined several types of models for logic QHC [6], but completeness theorem failed even
for propositional part HC of this logic. Author [1] considered algebraical models and Kripke-type
semantic for logic HC. Compleness theorem and finite model property are proved for this types of
models.
Artemov and Protopopesku [4] considered audit set models for intuitionistic epistemic logic IEL+.

Definition 1. Audit set scale is a triplet (𝑊,4,Aud), where (𝑊,4) is a standard intuitionistic scale
(𝑊 is a set, 4 is a partial order), Aud ⊆ 𝑊 is a subset of audit states such that

∀𝑎 ∈ 𝑊 ∃𝑏 ∈ 𝑊 (𝑎 4 𝑏 ∧ 𝑏 ∈ Aud).

Let us define the evaluation |= for intuitionistic formulas by standard way, for classical formulas by
naturally way only in audit states, and for modalities this way:

𝑎 |=?𝛼 ⇔ 𝑎 |= 𝛼 (for 𝑎 ∈ Aud)
𝑎 |=!𝑝 ⇔ ∀𝑏 ∈ Aud(𝑎 4 𝑏 ⇒ 𝑏 |= 𝑝) (for 𝑎 ∈ 𝑊 ),

We obtain a audit set model of logic HC.
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Theorem 1. Logic HC is complete with respect to audit set models. Moreover, the finite model
property holds.

Corollary 1. Logic IEL+ is complete with respect to finite audit set models.

Corollary 2. Logics HC and IEL+ are decidable.

Logic QHC is conservative extension of classical logic, intuitionistic logic and modal logic S4. This
fact was proved by Melikhov. There was an open questions whether QHC is conservative extension
of modal intuitionistic logic QH4 (let us denote ∇ =!?) which propositional part coincide which logic
IEL+. It is possible to extend audit set model of logic HC to models of logic QHC by attaching a set
of «available objects» to each element of 𝑊 . Author proved following theorem by using this models.

Theorem 2. Logic QHC is conservative extension of logic QH4.
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Computer-Assisted Proofs and Mathematical

Understanding

the case of Univalent Foundations

Andrei Rodin (andrei@philomatica.org)

Institute of Philosophy, Russian Academy of Sciences

The computer-assisted proof of Four Colour Map theorem (4CT) published by Kenneth Appel,
Wolfgang Haken and John Koch back in 1977 [1] prompted a continued philosophical discussion
on the epistemic value of computer-assisted mathematical proofs [10],[9],[3],[2],[7],[8]. We briefly
overview this discussion and then show how the Univalent Foundations of Mathematics (UF)
meets some earlier stressed epistemological concerns about computer-assisted proofs and thus
offers a new possibility to fill the gap between computer-assisted and traditional mathematical
proofs. We demonstrate the argument with a proof of basic theorem in Algebraic Topology
formalised in UF and implemented in AGDA [6].

1 Overview

In their proof of 4CT Appel and his co-authors used a low-level computer code written specifi-
cally for this purpose in order to check one by one 1482 different cases (configurations), which
was not feasible by hand. More recently a fully formalised version of Appel&Haken&Koch’s
proof has been implemented with Coq [4]. A philosophical discussion on this proof has been
started by Thomas Tymoczko [10] who argues that the computer-assisted proof of 4CT does
not qualify as mathematical proof in anything like the usual sense of of the word because
the computer part of this proof cannot be surveyed and verified in detail by human mathe-
matician or even a group of human mathematicians. On this ground Tymoczko suggests that
the computer-assisted proof of 4CT represents a wholly new kind of experimental mathemat-
ics akin to experimental natural sciences, where the computer plays the role of experimental
equipment.

Paul Teller in his response to Tymoczko [9] argues that Tymoczko misconceives of the concept
of mathematical proof by confusing the epistemic notion of verification that something is a
proof of a given statement with this proof itself, which under Teller’s general conception of
mathematical proof has no intrinsic epistemic content in it. Assuming that the published proof
of 4CT is indeed a proof, Teller argues that it is unusual only in how one gets an epistemic
access (if any) to it but that, contra Tymoczko, there is nothing unusual in the involved concept
of mathematical proof itself.

Commenting on Teller’s analysis in 2008 Dag Prawitz [7] approves on Teller’s distinction be-
tween a proof and its verification. However since Prawitz’s conception of proof unlike Teller’s
is essentially epistemic, Prawitz comes to a different conclusion. Contra Teller and in accor-
dance with Tymoczko Prawitz argues that if Appel&Haken&Koch’s alleged proof is indeed
a proof then it comprises a crucial empirical evidence provided by computer and thus is not
deductive.
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Mic Detlefsen and Mark Luker in their response to Tymoczko [3] quite convincingly show that
the difference between the computer-assisted proof of 4CT and traditional mathematical proofs
is less dramatic than Tymoczko says. For traditional mathematical proofs quite often, and
perhaps even typically, comprise some “blind” symbolic calculations like one that is needed in
order to compute the product 50 × 101 = 5050. How much a given symbolic calculation is
epistemically transparent or blind, is, according to Detlefsen&Luker, a matter of degree rather
than a matter of principle.

2 Local and Global Surveyability of Mathematical Proofs

O. Bradley Bassler [2] suggests to distinguish between local and global surveyability of math-
ematical proofs. By local surveyability of proof p Bassler understands the property of p that
makes it possible for a human to follow each elementary step of p. Bassler argues that local
serveyability of p does not, by itself, make p epistemically transparent or surveyable in the
usual intended sense because on the top of local surveyability it requires at least a minimal
global surveyability, which allows one to see that all steps of p taken together provide p with
a sufficient epistemic force that warrants its conclusion on the basis of its premises. In the
historical part of his paper Bassler shows that there is an unfortunate tendency to neglect the
global surveability in proofs by assuming that it reduces to the local one.

When one applies the distinction between local and global surveyability in the analysis of
Appel&Haken&Koch’s proof of 4CT the resulting picture is more complex than one suggested
by Tymoczko [10]. The computer part of the proof is fully locally surveyable in the sense
that each piece of the computer code can be checked and interpreted by human (since it is
written by human). Arguments explaining why the computation so encoded, if performed
correctly, completes the proof of the theorem, which Appel&Haken&Koch present in the form
of traditional mathematical prose, provide a global survey of this proof and of this computation
in particular. What this proof still lacks is rather an expected surveyability and traceability
at the intermediate scale between the general understanding of what the given computation
computes and the low-level computational steps expressed with the program code.

3 Univalent Foundations and Spatial Intuition

Homotopy Type theory (HoTT), which is the mathematical core of UF [5], allows one to think
of formal derivations in Martin-Löf Type theory (MLTT) as homotopical spatial constructions
. When this base calculus or its fragment is implemented in the form of programming code
then the same homotopical interpretation along with the associated spatial intuition applies
to the code. This spatial (homotopical) intuition makes formal symbolic derivations and the
corresponding programming code humanly surveyable in a new way: on the top of the local
surveyability that allows one to control elementary steps of the process, and in addition to the
high-scale global surveyability that provides one with a general understanding of the resulting
construction, the homotopical spatial intuition provides an epistemic access to the intermediate
mesoscopic level of this construction, which allows one to follow and control all significant steps
of formal reasoning ignoring its minute details. Such an intuitive reading of the formalism
bridges the usual gap between the rigour formal representation of mathematical reasoning with
logical calculi, on the one hand, and the conventional representations of mathematical reasoning,
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which typically heavily use various symbolic means of expression without strict syntactic rules,
on the other hand. Thus HoTT supports a representation of mathematical reasoning in general
and mathematical proof in particular, which is:

• fully formal in the sense that it uses a symbolic calculus with an explicit rigorous syntax;

• computer-checkable;

• supported by a spatial (homotopical) intuition that balances local and global aspects of
mathematical intuition in the usual way.

A simple (but not trivial) example of mathematical proof represented in this way is found in
[6]. It is a proof of basic theorem in Algebraic Topology according to which the fundamental
group π1(S1) of (topological) circle is S1 (isomorphic to) the infinite cyclic group Z, which is
canonically represented as the additive group of integers.

Let base be a point of given circle S1 (the base point). This judgement is formally reproduced
with the MLTT syntax as formula

b : S1

Then loops associated with this base point are terms of form:

loop : b =S1 b

The resulting formal proof and its implementation in a programming code are interpretable in
terms of such intuitive spatial (homotopical) constructions all the way through.

4 Conclusion

The UF-based approach in computer-assisted theorem proving allows the user to follow math-
ematical arguments at the crucial mesoscopic level of the proof structure, which is necessary
for human understanding of mathematical proofs in anything like the usual sense of the word.
In this case a computer-assisted proof does no longer appear as a “black box proof” where sig-
nificant parts of the argument remain epistemically opaque and are replaced by non-deductive
empirical evidences. This feature makes UF-based formal computer-assisted proofs quite like
traditional mathematical proofs in accordance with the general line of Detlefsen&Luker’s argu-
ment [3].
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In this talk, we study bounded distributive residuated lattices with modal operators 2 and
3 and their logics. We show that any canonical logic is Kripke complete via discrete duality
and canonical extensions. We show that a given canonical modal extension of the distributive
full Lambek calculus is the logic of its frames if its variety is closed under canonical extensions.

By the distributive full Lambek calculus with modal operators we mean the logic of the
following kind:

Definition 1. A residual normal distributive modal logic is the set of sequents Λ that contains
axioms (1)-(14) and closed under inference rules below:

p⇒ p

• ⊥ ⇒ p

• p⇒ >

• pi ⇒ p1 ∨ p2, i = 1, 2

• p1 ∧ p2 ⇒ pi, i = 1, 2

• p ∧ (q ∨ r)⇒ (p ∧ q) ∨ (p ∧ r)

• p • (q • r)⇔ p • (q • r)

• From ϕ⇒ ψ and ψ ⇒ θ infer ϕ⇒ θ

• From ϕ⇒ ψ and θ ⇒ ψ infer ϕ ∨ θ ⇒ ψ

• From ϕ • θ ⇒ ψ infer θ ⇒ ϕ \ ψ and vice
versa

• p • 1⇔ 1 • p⇔ p

• 3(p ∨ q)⇔ 3p ∨3q

• 3⊥ ⇒ ⊥

• 2p ∧2q ⇔ 2(p ∧ q)

• > ⇒ 2>

• 2p •2q ⇒ 2(p • q)

• From ϕ(p) ⇒ ψ(p) infer ϕ[p := ψ] ⇒
ψ[p := γ]

• From ϕ⇒ ψ and ϕ⇒ θ infer ϕ⇒ ψ ∧ θ

• From θ • ϕ ⇒ ψ infer θ ⇒ ψ/ϕ, and vice
versa

In fact, a residual normal distributive modal logic extends normal distributive normal modal
logic, the logic of bounded distributive lattices with modal operators introduced in [6]. To define
relational semantics we introduce ternary Kripke frames with the additional binary modal
relations. Such a ternary frame might be considered as a noncommutative generalisation of a
modal relevant Kripke frame described, e.g., here [10]. As it is usual in the relational semantics
of substructural logic, product and residuals have the ternary semantics as in, e.g., [1].

Definition 2. A Kripke frame is a tuple F = 〈W,R,R2, R3,O〉, whereR ⊆W 3, R2, R3 ⊆W 2,
O ⊆W .

Note that R, R2, and R3 have certain conditions that we define in more detail during
our talk. A Kripke model is a Kripke frame with an equipped valuation function that maps

∗The research is supported by the Presidential Council, research grant MK-430.2019.1.
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each propositional variable to ≤-upwardly closed subset of worlds. Let F = 〈W,R,R2, R3,O〉
be a Kripke frame, a Kripke model is a pair M = 〈F , ϑ〉, where ϑ : PV → Up(W,≤). Here,
Up(W,≤) is the collection of all upwardly closed sets. Variables, ∧, ∨, ⊥, and > are understood
standardly. The truth conditions for product, residuals, and 1 are understood with a ternary
relation and the distinguished subset O. 2 and 3 are understood as usual Kripkean necessity
and possibility defined in terms of R2 and R3 relations.

The soundness theorem is formulated and proved in stadardly.

Theorem 1. Let F be a class of Kripke frames, then Log(F) = {ϕ ⇒ ψ | F |= ϕ ⇒ ψ} is a
residual distributive normal modal logic.

Now we define algebraic semantics for such logics. The underlying algebraic structure for
us is a residuated lattice [7]. A residuated lattice is called bounded distributive if its lattice
reduct is bounded distributive. A residuated lattice morphism is a map f : L1 → L2 that
commutes with all operations. A residuated distributive modal algebra is a distributive bounded
residuated lattice extended with normal modal operators 2 and 3 that distribute over finite
infima and suprema correspondingly. One may also consider such algebras as full Lambek
algebras [8] [9] lattice reducts of which are bounded distributive lattices. Note that we also
require that 2 is also “normal” with respect to a product. Such a “normality” corresponds to
the promotion principle widely used in linear logic. This “normality” requirement is introduced
as the additional inequation, more precisely:

Definition 3. A residuated distributive modal algebra (RDMA) is an algebra M = 〈R,2,3〉
with the following conditions for each a, b ∈ R:

1. 2(a ∧ b) = 2a ∧2b, 2> = >

2. 3(a ∨ b) = 3a ∨3b, 3⊥ = ⊥

3. 2a ·2b ≤ 2(a · b)

A RDMA-morphism is a residuated lattice morphism f : M1 → M2 such that f(2a) =
2(f(a)) and f(3a) = 3(f(a)).

One may associate with an arbitrary residual normal modal logic its variety as follows:

Definition 4. Let L be a residual normal modal logic, then VL is a variety defined by the set
unequations {ϕ ≤ ψ | L ` ϕ⇒ ψ}

The usual Lindenbaum-Tarski construction provides us algebraic completeness for each
residual distributive normal modal logic.

Theorem 2. Let L be a residual normal modal logic, then there exists an RDMA ML such
that L ` ϕ⇒ ψ iff RL |= ϕ ≤ ψ

Now we define completely distributive residuated perfect lattice as a distributive version of
residuated perfect one defined in [2].

Definition 5. A distributive residuated lattice L = 〈L,
∨
,
∧
, ·, \, /, ε〉 is called perfect distribu-

tive residuated lattice, if:

• L is a perfect distributive lattice

2
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• ·, \, and / are binary operations on L such that / and \ right and left residuals of ·,
repsectively. · is a complete operator on L, and / : L × Lδ → L, \ : Lδ × L → L are
complete dual operators.

Here we formulate canonical extensions for bounded distributive lattices with a residuated
family in the fashion of [3]. Note that one may provide canonical extensions for Heyting algebras
similarly as it is described here [4]. See this paper to get acquainted with canonical extensions
for bounded distributive lattices with operators closely [5].

Lemma 1. Let L = 〈L, ·, \, /, ε〉 be a bounded distributive residuated lattice, then so Lσ =
〈Lσ, ·σ, \π, /π〉 is. Moreover, Lσ is a perfect residuated distributive lattice.

Definition 6. Let L be a perfect distributive residuated lattice and 2,3 unary operators on
L, then M = 〈L,2,3〉 is called a perfect distributive residuated modal algebra, if

• 2
∧
A =

∧
{2a | a ∈ A}

• 3
∨
A =

∨
{3a | a ∈ A}

• 2a ·2b ≤ 2(a · b)

where A ⊆ L

Given M, N perfect distributive modal algebras, a map M → N is a homomorphism, if
f is a complete lattice homomorphism that preserves product, residuals, modal operators, and
the multiplicative identity.

Let us show that the variety of all RDMA is closed under canonical extensions.

Lemma 2. Let M be a RDMA, then Mσ is a perfect DRMA, where Mσ is a canonical
extension of the undelying bounded distributive residuated lattice with extended 2 and 3.

Definition 7. A residual normal modal logic L is called canonical, if VL is closed under
canonical extensions

Given a Kripke frame F = 〈W,R,R2, R3,O〉, we construct a complex algebra F+ as defining
operations and constants Up(W,≤). It is clear that ⊥ = ∅, > = W , 1 = O, A ∧ B = A ∩ B,
A ∨B = A ∪B. Residuals, product, and modal operators are obtained via ternary and binary
modal relations.

Let us define M+, the dual Kripke frame a perfect RDMA M. Let us define the following
relations on J∞(M): aR3b ⇔ b ≤ 3a, aR2b ⇔ 2κ(a) ≤ κ(b), and Rabc ⇔ a · b ≤ c. The
structure M+ = 〈J∞(M),≤, R,R3, R2,O〉 is the dual frame of a perfect RDMA M, where
O =↑ {ε}.

Here, J∞(M) is the set of all completely join irreducible elements of a perfect RDMA R
and κ is the isomorphism between the set of all completely join irreducible elements and the
set of all completely meet irreducible elements defined as a 7→

∨
(− ↑ a).

Lemma 3.

1. A complex algebra of a Kripke frame F defined as F+ = 〈Up(W,≤),∧,∨,⊥,>, \, /, ·,O, [R2], 〈R3〉, 〉
is a perfect DRMA.

2. Let M be a perfect DRMA, then M+ is a Kripke frame

Theorem 3.

3
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1. Let F = 〈W,R,R2, R3,O〉 be a Kripke frame, then F ∼= (F+)+

2. Let M = 〈M,
∨
,
∧
,2,3, ε〉 be a perfect DRMA, then R ∼= (M+)+

3. Functors (.)+ : pDRMA � KF : (.)+ establish a dual equivalence between the category of
Kripke frames and the category of perfect DRMAs.

The discrete duality established above together with canonical extensions of residuated
distributive modal algebras provides the following consequence:

Theorem 4. Let L be a canonical residual distributive modal logic, then L is Kripke complete.
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Abstract

We prove the existence, for any complexity class or degree of unsolvability C, of a
linearly approximable extension of the unimodal propositional logic K whose variable-free
fragment is C-hard. A similar result is proven for extensions of the unimodal propositional
logic KTB.

1 Introduction
The study of computational properties of propositional modal, and related, logics has been
historically concerned with estimating the size of smallest Kripke frames separating formulas
from logics. The function fL estimating, for a logic L, the size of smallest L-frames refuting
L-inconsistent formulas is called (see e.g. [3, Chapter 18]) the complexity function of L. The
interest in the complexity function of a logic L is largely due to it giving us an estimate of
the running time of a decision algorithm for L-validity. In particular, provided the Kripke
semantics for L is reasonably “natural,” polynomiality of fL implies that L can be shown to be
polynomially equivalent to the classical propositional logic Cl—in the sense that the complexity
of L-validity is the same as the complexity of Cl-validity modulo a polynomial—using a natural
construction originally proposed by A. Kuznetsov [6] for the propositional intuitionistic logic
Int, but subsequently adapted to propositional modal logics whose semantics can be described
using classical propositional formulas [3, §18.1].1

The existence or otherwise of an inherent link between the nature of the complexity function
of L and the complexity of L-validity is a natural question that, as far as we know, has not
been explicitly considered in the literature. The existence, or at least plausibility, of such a
link seems to be an underlying assumption in Kuznetsov’s work [6]. The impression that such
a link is plausible might well arise from similarities in the constructions used in establishing
PSPACE-hardness of Int [15, 18] and the minimal normal modal logic K [7], on the one hand,
and those used in proving the exponentiality of the complexity function of Int [19], [3, §18.2],
[18] and K [1, §6.7], on the other.

A. Urquhart [16] has shown that, in propositional modal logic, enjoyment of the finite
model property is compatible with undecidability. Building on Urquhart’s work, E. Spaan [14,

1Perhaps the most widely known example of a “natural” propositional modal logic—i.e., one not purposefully
constructed to exhibit a logic with a sought property—whose complexity function is polynomial but that is not
polynomially equivalent to Cl unless NP = PSPACE is the linear-time temporal logic LTL [13]; the semantics
of LTL, however, involves evaluating formulas with respect to paths rather than worlds, which precludes a
straightforward application of Kuznetsov’s construction.
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Theorem 2.1.1] has shown that even the polynomial-size model property is compatible with
undecidability; in fact, Spaan has shown that this is so even for single-variable fragments of
extensions of K.

We further extend Spaan’s results, in three respects: we show that similar connections hold,
first, for arbitrary complexity classes or degrees of unsolvability, second, for even variable-free
fragments, and third, for the logics higher up in the lattice of the normal modal logics (namely,
extensions of KTB).

2 Preliminaries
We consider a propositional modal language containing a single unary modal operator 2. We
use the standard terminology and notation related to modal logic, as can be found in [3] and [1].
We use NExt L to denote the lattice of normal extensions of the propositional modal logic L.

Recall that a propositional modal logic L is said to have the finite model property (fmp)
if every L-consistent formula is satisfiable in a finite model based on an L-frame (equivalently,
every formula not in L is refuted in a finite model based on an L-frame).

Given a logic L that has the fmp, the complexity function of L (see, e.g., [3, §18.1]) is defined
by

fL(n) = max
{

min{|F| : F |= L, F 6|= ϕ} : |ϕ| 6 n and ϕ 6∈ L
}
,

where |F| is the cardinality of a frame F and |ϕ| is the size of a formula ϕ. A logic L is
polynomially (respectively, linearly) approximable, if there exists a positive constant c such that
fL(n) 6 nc (respectively, fL(n) 6 c · n), for sufficiently large n.

3 Main results
Given n > 2, let Fn = 〈Wn, Rn〉 be a Kripke frame where Wn = {w0, . . . , wn, w

∗} and
Rn = {〈wk, wk+1〉 : 0 6 k < n} ∪ {〈w0, w

∗〉}. Given n > 1, define αn = 32⊥ ∧3n2⊥.

Lemma 3.1. Let m, k > 2. Then, Fm, x |= αk if, and only if, k = m and x = w0.

Let A = N \ {0, 1}. Given a set I ∈ 2A, define 2 · I = {2n : n ∈ I}, CI = {Fn : n ∈ A \ 2 · I},
and LI = L(CI). Lemma 3.1 immediately gives us the following:

Lemma 3.2. For every n ∈ A,

¬α2n ∈ LI ⇐⇒ F2n /∈ CI ⇐⇒ n ∈ I.

Thus, LI -validity is as hard as the decision problem for the set I. Therefore, given any
complexity class or degree of unsolvability C, with an appropriate choice of I, we obtain a
C-hard normal modal logic LI—in fact, since formulas αn contain no propositional variables,
even the variable-free fragment of LI is C-hard.2

Lemma 3.3. For every I ⊆ A, the logic LI is linearly approximable.

Lemmas 3.3 and 3.2 give us the following:

Theorem 3.4. Let C be a complexity class or a degree of unsolvability. Then, there exists a
linearly approximable logic L ∈ NExt K whose constant fragment is C-hard.

2For many “natural” modal logics, the complexity of their variable-free fragments coincides with the com-
plexity of the full logic [2, 9].

2
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Figure 1: Frame Frs
n

Similar examples can be constructed higher up in the lattice of the normal propositional
modal logics. We illustrate this claim with extensions of the logic of reflexive and symmetric
frames KTB.

For every n > 1, let Frs
n = 〈Wn, Rn〉 be a Kripke frame (see Figure 1) where

Wn = {w1, . . . , wn} ∪ {w1, . . . , wn} ∪ {a, a, b1, b1, b2, b2, c1, c1, c2, c2}

and Rn is the reflexive and symmetric closure of the relation

{〈wk, wk〉 : 1 6 k 6 n} ∪ {〈a,w1, 〈a,wn〉} ∪
{〈a, b1〉, 〈a, b1〉, 〈b1, b2〉, 〈b1, b2〉, 〈b1, b1〉} ∪ {〈a, c1〉, 〈a, c1〉, 〈c1, c2〉, 〈c1, c2〉, 〈c1, c1〉}.

Recursively define the sequence of formulas

ζ0 = ¬p ∧3=22p ∧3=22¬p;
ζk+1 = ¬p ∧3(p ∧3ζk),

and define, for every n > 1 (letting 3=2ϕ = 33ϕ ∧ ¬3ϕ),

γn = p ∧3=22p ∧3=22¬p ∧3ζn ∧
n−1∧
k=0

¬3ζk.

Lemma 3.5. Let m, k > 2 and let x be a world in Frs
m . Then, γk is satisfiable at x if, and only

if, k = m and x ∈ {a, a}.

Let Crs
I = {Frs

n : n ∈ A \ 2 · I} and Lrs
I = L(Crs

I ). Lemma 3.5 immediately gives us the
following:

Lemma 3.6. For every n ∈ A,

¬γ2n ∈ Lrs
I ⇐⇒ Frs

2n /∈ Crs
I ⇐⇒ n ∈ I.

Therefore, Lrs
I -validity is as hard as the decision problem for the set I. Consequently, given

any complexity class or degree of unsolvability C, with an appropriate choice of I, we obtain a
C-hard normal extension Lrs

I of KTB—in fact, since formulas γn contain only one propositional
variable, even the single-variable fragment of Lrs

I is C-hard.3

Lemma 3.7. For every I ⊆ N+, the logic Lrs
I is linearly approximable.

Lemmas 3.7 and 3.6 give us the following:

Theorem 3.8. Let C be a complexity class or a degree of unsolvability. Then, there exists a
linearly approximable logic L ∈ NExt KTB whose single-variable fragment is C-hard.

3For many “natural” modal logics, the complexity of their single-variable fragments coincides with the com-
plexity of the full logic [5, 4, 2, 17, 8, 10, 11, 12].
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Arithmetical applications of Baaz’s
generalization method

Lorenzo Sauras-Altuzarra ∗

Extended abstract
In mathematics, examples are very important, but not all of them are equally good. Intuitively,

the more an example reflects the potential of a theorem, the better it is. In fact, if an example
sufficiently represents the essence of a theorem, then it can be almost as instructive as the
proof itself. Mathematical teaching via examples has many endorsements, notably Babylonian
mathematics, which mainly consisted of collections of examples (see Van der Waerden [3, Chapter
3]).

Baaz’s generalization method formalizes a way of measuring the quality of an example.
Indeed, from a concrete example E of a certain universal theorem T , it generates another
universal theorem t(E), with its corresponding proof. A subsequent comparison between T and
t(E) may show how well E approximates T .

But there is yet another possible use of this procedure: if applied to an answer to a concrete
case of an open problem (such as a proof that 641 divides the fifth Fermat number), it will
output a result that can be particularized to a partial answer to the question (such as a sufficient
condition for a number to be a divisor of an arbitrary Fermat number).

This talk will explain in detail how to apply this method in elementary number theory. A
general explanation of the algorithm is given by Baaz [1].

In addition, if time permits, some arithmetical results (and derived open problems) will be
commented, for example:

1. k ·2s+1 | Fn, for every k, n, r, s ∈ N+ such that r · s ≤ 2n−1 and k ·2s+1 | k2·r +22
n−2·r·s;

2. i | Fn, for every c, i, n ∈ N+ such that i | (22n−1 − i · c)2 + 1; and

3. 22
n−4·(n+2)+ i4 | Fn, for every i, n ∈ N+ such that n > 4 and i ·2n+2+1 = 22

n−4·(n+2)+ i4

(Fn denotes the nth Fermat number). For proofs of these theorems and some other associated
questions, see Sauras-Altuzarra [2].
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We consider normal 1-modal logics, propositional and predicate. For the basic definitions
cf. [1], [2].

1 Propositional logics

For a set of modal formulas Γ, put

�Γ := {�A | A ∈ Γ}.

For a modal propositional logic L put

�·L := K + �L.

Lemma 1.1. �·(K + Γ) = K + �Γ.

It turns out that �·L inherits many properties of L.

Theorem 1.2. • If L is Kripke complete, then �·L is Kripke complete.

• If L is strongly Kripke complete, then �·L is strongly Kripke complete.

• If L is canonical, then �·L is canonical.

• If L has the FMP, then �·L has the FMP.

• If L is locally tabular, then �·L is locally tabular.

• If L is has a finite modal depth, then �·L has a finite modal depth:

md(�·L) ≤ md(L) + 1.

Hence, in particular, we obtain many new examples of locally tabular logics.

Corollary 1.3. The logics K + �n(p→ �p) (and all their extensions) are locally tabular.

Another consequence is the FMP for some logics of trees. Recall that a tree (irreflexive and
intransitive) is a rooted frame, in which every point (but the root) has a unique predecessor.
A reflexive tree is a reflexive closure of a tree.

Theorem 1.4. The logic of every serial tree has the FMP.

Theorem 1.5. The logic of every reflexive tree has the FMP.

Theorem 1.6. The logic of every tree validating

3> → 32> ∧3�⊥

has the FMP.
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2 Predicate logics

Recall that QΛ is the minimal predicate extension of a propositional logic Λ; T = K+�p→ p.
For a predicate modal logic L we also define boxing:

�·L := QK + �L.

For modal predicate logics a direct analogue of Lemma 1.1 does not hold. It is replaced by
the following

Lemma 2.1. �·(QT + Γ) = QT + �Γ + �∀ref , where

�∀ref := �∀x(�P (x)→ P (x)).

Axiomatization of boxing in other cases remains an open problem.

Definition 2.2. A predicate modal theory Γ is a set of closed predicate modal formulas with
constants.

A predicate modal theory Γ is satisfiable in a predicate Kripke frame F if there exists a
Kripke model M over F, a world w in M and a map δ from constants of Γ to the domain of w
such that M,w � δ · Γ.

A predicate modal logic L is strongly Kripke complete if every L-consistent countable theory
Γ is satisfiable in a Kripke frame validating L.

Theorem 2.3. Let Λ be a modal propositional logic containing T. If QΛ is strongly Kripke
complete, then �·QΛ is strongly Kripke complete.

There are several well-known examples of logics Λ above T, for which QΛ is strongly
Kripke complete: T, S4, S5, S4.2, S4.3, Triv. So in these cases boxing preserves strong
Kripke completeness.

The definition of strong completeness can be extended to Kripke sheaf semantics. Then we
can prove a better result:

Theorem 2.4. If a predicate modal logic L is strongly Kripke sheaf complete, then � ·L is
strongly Kripke sheaf complete.

On the other hand, quite often logics of the form QK + �Γ are Kripke (and Kripke sheaf)
incomplete. In particular, we have

Theorem 2.5. If Λ is any consistent modal propositional logic containing T, then Q(�·Λ) is
Kripke incomplete, and �·(QΛ) = Q(�·Λ) + �∀ref is its Kripke completion.
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Abstract

In the talk we present axiomatic of fix-point computer arithmetics that we use in our
platform-independent incremental combined approach to specification and verification of
the standard functions sqrt, cos and sin that implement mathematical functions

√
, cos

and sin.

1 Introduction

One who has a look at verification research and practice may observe that there exist verification
in large (scale) and verification in small (scale): verification in large deals (usually) behavioral
properties of large-scale complex critical systems like the Curiosity Mars mission [4], while
verification in small addresses (usually) functional properties of small programs like computing
the standard trigonometry functions [3, 2].

Our research “Platform-independent approach to formal specification and verification of
standard mathematical functions” deals with verification in small. It may look like that it is
about the same topic as [3, 2] i.e. formal verification of the standard computer functions that
implement mathematical functions. But there are serious differences between [3, 2] and our
research project.

Our research project is aimed onto a development of an incremental combined approach
to the specification and verification of the standard mathematical functions. Platform-
independence means that we attempt to design a relatively simple axiomatization of the com-
puter arithmetic in terms of real, rational, and integer arithmetic (i.e. the fields R and Q of real
and rational numbers, the ring Z of integers) but don’t specify neither base of the computer
arithmetic, nor a format of numbers’ representation. Incrementality means that we start with
the most straightforward specification of the simplest easy to verify algorithm in real numbers
and finish with a realistic specification and a verification of an algorithm in computer arithmetic.
We call our approach combined because we start with a manual (pen-and-paper) verification of
some selected algorithm in real numbers, then use these algorithm and verification as a draft
and proof-outlines for the algorithm in computer arithmetic and its manual verification, and
finish with a computer-aided validation of our manual proofs with some proof-assistant system
(to avoid appeals to “obviousness” that are very common in human-carried proofs).

2 A Brief of the Approach Results

In our approach we start with easy-to-verify Hoare total correctness assertions [1] for logical
specification of imperative algorithms that implements the computer functions in “ideal” real
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arithmetic, and finish with computer-aided verification of the computer functions in computer
fix-point arithmetic. Full details of our approach can be found in [6, 5].

In a journal (Russian) paper [6] an adaptive imperative algorithm implementing the Newton-
Raphson method for a square root function

√
has been specified by total correctness asser-

tions and verified manually using Floyd-Hoare approach in both fix-point and floating-point
arithmetics; the post-condition of the total correctness assertion states that the final overall
truncation error is not greater that 2ulp where ulp is Unit in the Last Place — the unit of the
last meaningful digit.

The paper [6] has reported also two steps towards computer-aided validation and verification
of the used adaptive algorithm. In particular, an implementation of a fix-point data type accord-
ing to the axiomatization can be found at https://bitbucket.org/ainoneko/lib_verify/

src/; ACL2 computer-carried proofs of (i) the consistency of the computer fix-point arith-
metic axiomatization, and (ii) the existence of a look-up table with initial approximations for
√

are available at https://github.com/apple2-66/c-light/tree/master/experiments/

square-root.
In a work-in-progress electronic preprint [5] platform-independent and incremental approach

is applied for manual (pen-and-paper) verification (using Floyd-Hoare approach) of the com-
puter functions cos and sin (that implement mathematical trigonometric functions cos and
sin) for fix-point argument values in the rage [−1, 1] (in radian measure); the post-condition
of the total correctness assertion states that the final overall truncation error is not greater
that 3n×ulp

2(1−ulp) where n = O (| ln ε|) and ε > 0 is user-defined computational error (in ideal real

arithmetic).

3 Fix-point Arithmetic

Below we present version axiomatization (modulo “ideal” arithmetic of real, rational and in-
teger numbers) of a computer (platform-independent) fix-point arithmetic data type as in [6].
(Please remark that we explicitly admit that there may be several different fix-point data types
simultaneously.)

A fix-point data-type (with Gaussian rounding) D satisfies the following axioms.

• The set of values V alD is a finite set of rational numbers Q (and reals R) such that

– it contains the least infD < 0 and the largest supD > 0 elements,

– altogether with

∗ all rational numbers in [infD, supD] with a step δD > 0,

∗ all integers IntD in the range [− infD, supD].

• Admissible operations include machine addition ⊕, subtraction 	, multiplication ⊗, di-
vision �, integer rounding up d e and down b c.

Machine addition and subtraction. If the exact result of the standard mathematical
addition (subtraction) of two fix-point values falls within the interval [infD, supD],
then machine addition (subtraction respectively) of these arguments equals to the
result of the mathematical operation (and notation + and − is used in this case).

Machine multiplication and division. These operations return values that are near-
est in V alD to the exact result of the corresponding standard mathematical operation:
for any x, y ∈ V alD
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– if x× y ∈ V alD then x⊗ y = x× y;

– if x/y ∈ V alD then x� y = x/y;

– if x× y ∈ [infD, supD] then |x⊗ y − x× y| ≤ δD/2;

– if x/y ∈ [infD, supD] then |x� y − x/y| ≤ δD/2;

Integer rounding up and down are defined for all values in V alD.

• Admissible binary relations include all standard equalities and inequalities (within
[infD, supD]) denoted in the standard way =, 6=, ≤, ≥, <, >.

References

[1] K.R. Apt, F.S. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer-Verlag, 2009.

[2] G. Grohoski. Verifying oracle’s sparc processors with acl2. slides of the invited talk for 14th inter-
national workshop on the acl2 theorem prover and its applications. http://www.cs.utexas.edu/

users/moore/acl2/workshop-2017/slides-accepted/grohoski-ACL2_talk.pdf, 2017.

[3] J. Harrison. Formal verification of floating point trigonometric functions. Lecture Notes in Computer
Science, 1954:217–233, 2000.

[4] G.J. Holzmann. Mars code. Commun. ACM, 57(2):64–73, 2014.

[5] N. V. Shilov, B. L. Faifel, S. O. Shilova, and A. V. Promsky. Towards platform-independent
specification and verification of the standard trigonometry functions. arXiv:1901.03414, https:

//arxiv.org/abs/1901.03414, 2019.

[6] N. V. Shilov, D. A. Kondratyev, I. S. Anureev, E. V. Bodin, and A. V. Promsky. Platform-
independent specification and verification of the standard mathematical square root function. Mod-
eling and Analysis of Information Systems, 25(6):637–666, 2018. (In Russian. English translation:
Automatic Control and Computer Sciences, 2019, Vol. 53, No. 7, pp. 595–616.).

3

52

http://www.cs.utexas.edu/users/moore/acl2/workshop-2017/slides-accepted/grohoski-ACL2_talk.pdf
http://www.cs.utexas.edu/users/moore/acl2/workshop-2017/slides-accepted/grohoski-ACL2_talk.pdf
https://arxiv.org/abs/1901.03414
https://arxiv.org/abs/1901.03414


On a Possibility of Finite Characterizations for

Kripke Complete Non-Recursively Axiomatizable

Superintuitionistic Predicate Logics

Dmitrij Skvortsov

It is well known that there exist many natural classes F of predicate Kripke

frames for which the corresponding superintuitionistic predicate logics L[F ] are

non-recursively axiomatizable (see e.g. [1, 2, 3]). Here we consider a possibility

of finite semantical characterizations for some logics of this kind.

Denote the superintuitionistic predicate logic of a (predicate) Kripke frame

F (i.e., the set of formulas valid in F ) by LF . Recall that a predicate logic L

is called Kripke complete if L = L[F ] for some class F of Kripke frames, where

L[F ] =
⋂

(LF : F ∈F). The Kripke completion of a logic L is the smallest

(w.r.t. the inclusion) Kripke complete extension of L.

Let L and L0 be two predicate logics, L being Kripke complete. We say that

L0 semantically generates L if L is the Kripke completion of L0.

A logic L = L[F ] of a class F of Kripke frames is called finitely (or recur-

sively) semantically generated if there exists a finitely (or, resp., recursively)

axiomatizable logic L0 semantically generating L. In this case we also can say

that the class F itself is finitely (resp., recursively) semantically generated. This
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notion can be regarded as a semantical analogue to finite / recursive axiomatiz-

ability; namely, semantical comletion (i.e., ‘semantical closure’) is used instead

of deductive closure (i.e., deductive consequence). Clearly, this notion can be

interesting only for natural classes of Kripke frames.

Obviously, every finitely / recursively axiomatizable Kripke complete logic

is trivially finitely / recursively semantically generated: just take L0 = L. Here

we show that natural Kripke complete non-recursively axiomatizable logics can

be still finitely (hence, recursively) semantically generated.

Proposition. Let L = L[F ] be the logic of a class of Kripke frames F , let L0

be a predicate logic, and let FL0 be the class of Kripke frames validating L0.

Then: L0 semantically generates L iff the following two conditions hold:

(i) F ⊆ FL0 or, equivalently, L0 ⊆ L(= L[F ]);

(ii) L ⊆ LF for every frame F from FL0 \F .

Proof. Let L∗ = L[FL0 ] be the Kripke completion of L0; hence

L0 semantically generates L iff (0) L∗ = L.

The condition (ii) means that L ⊆ L[FL0 \F ].

Therefore, the condition (0) obviously implies (ii), as well as (i).

On the other hand, (i) implies that L∗ = L∩L[FL0\F ], so (ii) gives (0).

Let Finc be the class of frames with constant domains over finite posets;

let Pc
∞ be the class of frames of finite height with constant domains; finally,

let WFc
d be the class of frames with constant domains over dually well-founded

(i.e., Nötherian) posets.

Theorem. (The logics of) the classes of frames Finc, Pc
∞, WFc

d are finitely

semantically generated.
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Cf. [4], Proposition 1 and footnote 9 from Sect. 3.2, and Lemma 3 from

Sect. 4.3. Note that here the condition (ii) from our Proposition follows from

the subsequent claim (cf. [4], Corollary 2 from Sect. 3.1):

Claim. L[Finc] ⊆ LF for every frame F with a finite constant domain.

We do not know if the logics of the corresponding classes of frames with

expanding domains are finitely (or at least recursively) semantically generated.
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Definability of graph properties in modal languages

Vladislav Slyusarev1
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Graphs provide a descriptively effective theoretical framework for a lot of branches of math-
ematics and computer science. Despite the high level of generality from the descriptive point of
view, graph theory lacks common methods that could be used to check arbitrary graph proper-
ties in a similar way. Usually each graph problem has to be solved and each graph property has
to be tested with a specific method that usually does not generalize to other different problems
or properties.

In the last few decades, logical languages, and particularly modal languages, have attracted
the attention as the means for generalized solution of graph problems. Modal logics are preferred
due to Kripke semantics that allow to evaluate modal formulas in structures that are essentially
directed graphs. Graph properties can be defined in modal languages through the concept of
validity in a frame. Given a graph G and a formula φ, we use the notation G |= φ for “φ is
valid in G”, considering a directed graph as a Kripke frame with a single relation defined by
the edge set of G. The problem of determining if G |= φ for a given modal formula φ and a
graph G, known as the frame-checking problem, is decidable. Its computational complexity is
estimated in [3]: it is shown that the frame-checking problem is PTIME (linear) in the length
of formula and EXPTIME in the size of frame.

There are several approaches to define a graph property with logical formulas.

1. A property is called finitely definable if there exists a single formula φ such that a graph
G has the desired property if and only if G |= φ.

2. A property is called definable if there exists a (possibly infinite) set of formulas Φ such
that a graph G has the desired property if and only if ∀φ ∈ Φ (G |= φ).

3. A property is called co-definable if there exists a (possibly infinite) set of formulas Φ such
that a graph G has the desired property if and only if ∃φ ∈ Φ (G |= φ).

In particular, a graph property is co-definable if there exists a countable set of formulas
{φn}n∈N such that for each n ∈ N any graph Gn of cardinality n has the property is and only if
Gn |= φn. This important special case is a common means of defining complex graph properties
such as being Hamiltonian.

A study of graph properties from the point of view of modal definability is presented in
[1], [2], and [3]. In [1], where the problem of modal definability for graph properties was first
stated, the author proves that the basic modal language fails to express several important
properties, such as being connected, planar or Eulerian. Extensions of the modal language,
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including hybrid logics, are discussed in [3], and examples of formulas defining graph properties
are given. These results are generalized in [2]: it is shown that every NP graph property is
co-definable (with a countable set of formulas dependent on graph size) in the language FHL
(Full Hybrid Logics).

The latter result shows the effectiveness of the chosen method but still can be improved and
extended. First, the considered language is complex and therefore computationally non-optimal
compared to the known algorithms for several graph properties. Second, it does not cover the
important question of finite definability for graph properties.

In this talk we will discuss different approaches to defining graph properties, such as acyclic-
ity, connectivity, planarity, etc., with the language of modal logics and its extensions. We con-
sider the basic modal language ML with propositional variables, Boolean connectives and the
modal operator ♦:

ML ::= > | p | ¬φ | φ1 ∧ φ2 | ♦φ.

Then we define more expressive languages by enriching it with additional modal operators and
symbols, including:

1. the inverse modality ♦−1;

2. the transitive modality ♦+;

3. the inverse transitive modality ♦−;

4. the global modality E [4];

5. the nominals i and the satisfaction operators @i [4];

6. the state variables x and the bind operators ↓x.· [4].

We combine these extensions to define the extended modal languages as follows:

ML± ::= > | p | ¬φ | φ1 ∧ φ2 | ♦φ | ♦+φ | ♦−1φ | ♦−φ;

PH ::= > | i | ¬φ | φ1 ∧ φ2 | ♦φ;

PH(@) ::= > | i | ¬φ | φ1 ∧ φ2 | ♦φ | @iφ;

PH(E) ::= > | i | ¬φ | φ1 ∧ φ2 | ♦φ | Eφ;

PH(@, ↓) ::= > | i | x | ¬φ | φ1 ∧ φ2 | ♦φ | @iφ | @xφ | ↓x.φ;

H ::= > | p | i | ¬φ | φ1 ∧ φ2 | ♦φ;

H(@) ::= > | p | i | ¬φ | φ1 ∧ φ2 | ♦φ | @iφ;

H(E) ::= > | p | i | ¬φ | φ1 ∧ φ2 | ♦φ | Eφ;

H(@, ↓) ::= > | p | i | x | ¬φ | φ1 ∧ φ2 | ♦φ | @iφ | @xφ | ↓x.φ;

HGL ::= > | p | i | ¬φ | φ1 ∧ φ2 | ♦φ | ♦+φ | @iφ;

HGL(↓) ::= > | p | i | x | ¬φ | φ1 ∧ φ2 | ♦φ | ♦+φ | @iφ | @xφ | ↓x.φ;

FHL ::= > | p | i | ¬φ | φ1 ∧ φ2 | ♦φ | ♦−1φ | Eφ | @iφ | @xφ | ↓x.φ.

The study of various modal languages in the context of graph property definability has
proved to yield some valuable notions and examples, illustrating their comparative expressive-
ness. We will discuss the known results in this field, including the following.

1. No useful graph properties are definable in ML and ML±.
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2. Full graphs and graphs without loops are finitely-definable in PH (and, consequently, in
richer languages) [4].

3. Strongly connected graphs are finitely-definable in H(E).

4. Weak connectivity, k-regularity, clique number, independence number, diameter, radius,
girth, minimum and maximum vertex degree are not definable in H(@)

5. Strongly connected and acyclic graphs are finitely-definable in HGL [3].

6. Hamiltonian graphs are co-definable in HGL [3].

7. Every graph property in NP is co-definable in FHL.

We will compare different extensions of the modal language from the point of view of graph
problems, and provide proof sketches for the main results.
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TOWARDS CAPTURING PTIME WITH NO

COUNTING CONSTRUCT (BUT WITH A VERSION OF

HILBERT’S CHOICE OPERATOR EPSILON)

EUGENIA TERNOVSKA

The central open question in Descriptive Complexity is whether there
is a logic that characterizes deterministic polynomial time (PTIME) on
relational structures. In this talk, I introduce my work on this question.
I define a logic that is obtained from first-order logic with fixed points,
FO (FP), by a series of transformations that include restricting logical
connectives and adding a dynamic version of Hilbert’s Choice operator
Epsilon. The formalism can be viewed either as an algebra of binary
relations or a linear-time modal dynamic logic, where algebraic expres-
sions describing “proofs” or “programs” appear inside the modalities.

Many typical polynomial time properties such as cardinality, reach-
ability and those requiring “mixed” propagations (that include linear
equations modulo two) are axiomatizable in the logic, and an arbitrary
PTIME Turing machine can be encoded. For each fixed Choice func-
tion, the data complexity of model checking is in PTIME. However,
there can be exponentially many such functions. “Naive evaluations”
refer to a version of this model checking procedure where the Choice
function variable Epsilon is simply treated as a constant. A crucial
question is under what syntactic conditions on the algebraic terms such
a naive evaluation works, that is, provides a certain answer to the orig-
inal model checking problem. The two views of the formalism support
application of both automata-theoretic and algebraic techniques to the
study of this question.

Simon Fraser University, Canada
Email address: ter@sfu.ca
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Unrefutability by clause set cycles
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Jannik Vierling
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The subject of automated inductive theorem proving (AITP) aims at
automating the process of finding proofs by mathematical induction. The
automation of proof by mathematical induction has applications in formal
methods for software engineering and in the formalization of mathematics.
A great variety of methods has been developed for the automation of proof
by induction. Typically each method operates in a more or less different
setting. Furthermore, the design of these methods is driven by efficiency and
ease of automation and therefore many AITP methods exist mainly at lower
levels of abstraction. Because of their technical nature, AITP methods are
traditionally analyzed empirically, and formal results backing the empirical
observations are still rare. In particular, there are currently only very few
negative results and it is difficult to classify AITP systems by their strength.

We address this situation by analyzing AITP methods formally. The first
step of such an analysis consists in abstracting an AITP method, or a family
of methods, by a logical theory. Such an abstraction can then be analyzed
by applying results and techniques from mathematical logic. In this way
we can measure the strength of AITP systems and compare them with each
other. Furthermore, abstracting AITP systems by logical theories allows us
to obtain negative results which are particularly valuable in revealing the
logical features that a given method lacks.

The n-clause calculus [KP13] is an AITP method that extends the super-
position calculus by a cycle detection mechanism. A cycle detected by the
n-clause calculus represents an argument by infinite descent that establishes
the inconsistency of the given clause set and thus terminates the refutation.
In [HV20] we have analyzed the n-clause calculus by abstracting its com-
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paratively technical cycle detection mechanism by the notion of clause set
cycles. In the following we will recall the notion of refutation by a clause set
cycle and some important results. By 0/0 and s/1 we denote the function
symbols representing the natural number 0 and the successor function for
natural numbers, respectively. Furthermore, we fix a special, fresh constant
symbol η on which arguments by infinite descent take place.

Definition 1. Let L be a first-order language. An L ∪ {η} clause set C(η)
is called an L clause set cycle if it satisfies the following conditions

C(s(η)) |= C(η), (C1)
C(0) |= ⊥. (C2)

An L ∪ {η} clause set D(η) is refuted by a clause set cycle C(η) if

D(η) |= C(η). (C3)

By dualizing the definition of clause set cycles and observing that clause
set cycles are essentially parameter-free we can we can show that refutations
by a clause set cycle can be simulated by the parameter-free induction rule
for ∃1 formulas.

Theorem 2 ([HV]). Let D(η) be an L ∪ {η} clause set. If D(η) is refuted
by an L clause set cycle, then [∅,∃1(L)−-INDR] +D(η) is inconsistent.

As mentioned above this upper bound is optimal in terms of the quantifier
complexity of the induction formulas. In other words clause set cycles cannot
be simulated by quantifier-free induction.

Theorem 3 ([HV20]). There exists a language L and an L∪ {η} clause set
D(η) such that D(η) is refuted by an L clause set cycle, but Open(L)-IND+
D(η) is consistent.

These results give rise to the question whether clause set cycles are at
least as strong as induction for quantifier-free formulas. Empirical evidence
has led us to conjecture that refutation by a clause set cycle is incomparable
with induction for quantifier-free formulas.

In this talk we will show that this conjecture has a positive answer. We
define a candidate clause set in the setting of linear arithmetic. The language
of linear arithmetic consists of the symbols 0/0, s/1, p/1, and +/2, where
the latter two represent the predecessor function and the addition of natural
numbers, respectively. Let T be the theory axiomatized by the universal
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closure of 0 6= s(x) and the defining equations of p/1 and +/2, then the
clause set I(η) is given by

I(η) := cnf (T ) ∪ {{η + η = η}, {η 6= 0}}.

Intuitively, the clause set I(η) asserts the existence of a non-zero additive
idempotent. By making use of the upper bound of Theorem 2 we can show
the unrefutability of I(η) by a clause set cycle by proving the following
independence result.

Theorem 4. [T ,∃1(L(T ))−-INDR] 6` x+ x = x→ x = 0.

We will proceed by constructing a model M with non-zero idempotents
whose domain consists of one copy of N and |N| copies of Z. In particular,
we will show that for every true, p-free, ∃1 formula ϕ(x), there exists on
every non-standard chain an infinite, strictly descending sequence of elements
(zi)i∈N such that

M |= ϕ(zi), for all i ∈ N.

The unrefutability of I(η) by clause set cycles shows that clause set cycles
are very weak and can not even deal with formulas such as x+x = x→ x = 0
that have a straightforward proof by quantifier-free induction. However, the
situation may even be much worse. A clause set cycle C(η) corresponds
roughly speaking to an inductive ∃1 lemma ϕC(x). However, the notion of
refutation by a clause set cycle only uses this lemma to infer the instance
ϕC(η). Therefore, we conjecture that refutation by a clause set cycle is
even incomparable with parameter-free induction for quantifier-free formulas.
The intuition for this is, that proving a sentence like 0 + (η + η) = η + η
requires the lemma 0 + x = x and the instance x 7→ η + η. The conjectured
relations between the refutational strength of clause set cycles and some
related theories with induction are shown in Figure 1.
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Figure 1: Conjectured relation between the refutational strength of various
induction systems. The dots indicate that the surrounding area is not empty,
the question mark indicates that we conjecture the are to be non-empty.
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Abstract

Presburger Arithmetic the true theory of natural numbers with addition. We show that
the interpretations of Presburger Arithmetic in itself are definably isomorphic to the trivial
one, confirming the conjecture of A. Visser. To prove that, we develop a characterization
of linear orderings interpretable in (N,+). We show that all interpretable linear orderings
can be expressed as a restriction of the lexicographical ordering on Zk for some k to some
Presburger-definable set. This generalizes the results of [10] where the one-dimensional
result was proven.

This talk is based on a joint work with Fedor Pakhomov.
Presburger Arithmetic PrA [7] is the true theory of natural numbers with addition. Un-

like Peano Arithmetic PA, it is complete, decidable and admits quantifier elimination in an
extension of its language.

A reflexive arithmetical theory ([9, p. 13]) is a theory that can prove the consistency of all
its finitely axiomatizable subtheories. Peano Arithmetic PA and Zermelo-Fraenkel set theory
ZF are among well-known reflexive theories. For sequential theories reflexivity implies that the
theory cannot be interpreted in any of its finite subtheories. A. Visser has conjectured that
this purely interpretational-theoretic property holds for PrA as well. Note that Presburger
Arithmetic, unlike sequential theories, cannot encode tuples of natural numbers by single nat-
ural numbers, and thus, for interpretations in Presburger Arithmetic it is important whether
individual objects are interpreted by individual objects (one-dimensional interpretations) or by
tuples of objects of some fixed length m (m-dimensional interpretations).

As shown in [11], Visser’s conjecture follows from the following statement:

Theorem 1. Let A be a model of PrA interpreted in (N,+). Then A is isomorphic to (N,+)
and, moreover, the isomorphism is definable in (N,+).

In the work [10], we have established that Visser’s conjecture holds for one-dimensional
interpretations. We establish that by studying the interpretation of the ordering on A induced
by the interpretation.

We showed that each linear order that is interpretable in (N,+) is scattered, i.e. it doesn’t
contain a dense suborder. Moreover, we are able to give an estimation for Cantor-Bendixson
ranks of the orders [3] (for a more precise estimation we use a slightly different notion of V D∗-
rank from [5]):

Theorem 2 ([10], Theorem 4.3). All linear orderings m-dimensionally interpretable in (N,+)
have the V D∗-rank at most m.

Already for n ≥ 2 the rank condition is far from sufficient. In order to produce a multi-
dimensional version of Theorem 1, we establish a necessary and sufficient condition on the linear
ordering interpretability. Turns out that the following holds:

Theorem 3. A linear ordering (L,≺) is m-dimensionally interpretable in (N,+) for some
m ≥ 1 if and only if there exists some k ∈ N and a PrA-definable set D ∈ Zk such that L is
isomorphic to the restriction of the lexicographic ordering on Zk to D.
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From this description we derive the multi-dimensional Visser’s conjecture.

Theorem 4 (Visser’s Conjecture, Multi-Dimensional Version). For any model A of PrA that is
m-dimensionally interpreted in the model (N,+) (m ≥ 2), A is definably isomorphic to (N,+).

The results are provided in the article [6].
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