|
Список публикаций:
|
|
Цитирования (Crossref Cited-By Service + Math-Net.Ru) |
|
1. |
A. V. Zotov, “On the field analogue of elliptic spin Calogero-Moser model: Lax pair and equations of motion”, Функц. анализ и его прил. (в печати) ; (to appear) |
2. |
А. В. Зотов, Р. А. Потапов, “Взаимосвязи между дуальностями в классических интегрируемых системах и классическо-классическая версия квантово-классической дуальности”, ТМФ (в печати) |
|
2024 |
3. |
M. Matushko, A. Zotov, “Supersymmetric generalization of $q$-deformed long-range spin chains of Haldane–Shastry type and trigonometric $\mathrm{GL}(N|M)$ solution of associative Yang–Baxter equation”, Nuclear Phys. B, 1001 (2024), 116499 , 14 pp., arXiv: 2312.04525 ; |
4. |
К. Р. Аталиков, А. В. Зотов, “Калибровочная эквивалентность между $(1+1)$-мерными теориями поля Калоджеро–Мозера–Сазерленда и тригонометрическим уравнением Ландау–Лифшица старшего ранга”, ТМФ, 219:3 (2024), 545–561 ; K. R. Atalikov, A. V. Zotov, “Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field theory and a higher-rank trigonometric Landau–Lifshitz model”, Theoret. and Math. Phys., 219:3 (2024), 1004–1017 |
5. |
Andrei Zotov, “Non-ultralocal classical $r$-matrix structure for $1+1$ field analogue of elliptic Calogero–Moser model”, J. Phys. A, 57 (2024), 315201 , 28 pp., arXiv: 2404.01898 ; |
|
2023 |
6. |
M. Matushko, A. Zotov, “Elliptic generalisation of integrable $q$-deformed anisotropic Haldane–Shastry long-range spin chain”, Nonlinearity, 36:1 (2023), 319 , 36 pp., arXiv: 2202.01177 ;
|
3
[x]
|
7. |
K. Atalikov, A. Zotov, “Gauge equivalence between 1 + 1 rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, Письма в ЖЭТФ, 117:8 (2023), 632–633 , arXiv: 2303.08020 ; JETP Letters, 117:8 (2023), 630–634
|
1
[x]
|
8. |
К. Р. Аталиков, А. В. Зотов, “Обобщение старшего ранга 11-вершинной рациональной $R$-матрицы: соотношения IRF-Vertex и ассоциативное уравнение Янга–Бакстера”, ТМФ, 216:2 (2023), 203–225 ; K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103 , arXiv: 2303.02391
|
1
[x]
|
9. |
M. Matushko, Andrei Zotov, “Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and $R$-matrix identities”, Ann. Henri Poincaré, 24 (2023), 3373–3419 , arXiv: 2201.05944 ;
|
3
[x]
|
|
2022 |
10. |
A. Gorsky, M. Vasilyev, A. Zotov, “Dualities in quantum integrable many-body systems and integrable probabilities. Part I”, JHEP, 2022:4 (2022), 159 , 86 pp., arXiv: 2109.05562 ;
|
5
[x]
|
11. |
A. Levin, M. Olshanetsky, A. Zotov, “2D Integrable systems, 4D Chern–Simons theory and affine Higgs bundles”, Eur. Phys. J. C, Part. Fields, 82 (2022), 635 , 14 pp., arXiv: 2202.10106 ;
|
5
[x]
|
12. |
A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 23 , 51 pp., arXiv: 2107.01697 ;
|
7
[x]
|
13. |
K. Atalikov, A. Zotov, “Higher rank $1+1$ integrable Landau–Lifshitz field theories from associative Yang–Baxter equation”, Письма в ЖЭТФ, 115:12 (2022), 809–810 , arXiv: 2204.12576 ; K. Atalikov, A. Zotov, “Higher Rank 1 + 1 Integrable Landau–Lifshitz Field Theories from the Associative Yang–Baxter Equation”, JETP Letters, 115 (2022), 757-762 , arXiv: 2204.12576
|
4
[x]
|
14. |
E. Trunina, A. Zotov, “Lax equations for relativistic $\mathrm{G}\mathrm{L}(NM,\mathbb{C})$ Gaudin models on elliptic curve”, J. Phys. A, 55:39 (2022), 395202 , 31 pp., arXiv: 2204.06137 ;
|
2
[x]
|
15. |
М. Г. Матушко, А. В. Зотов, “$R$-матричные тождества, связанные с эллиптическими анизотропными спиновыми операторами Руйсенарса–Макдональда”, ТМФ, 213:2 (2022), 268–286 ; M. G. Matushko, A. V. Zotov, “On the $R$-matrix identities related to elliptic anisotropic spin Ruijsenaars–Macdonald operators”, Theoret. and Math. Phys., 213:2 (2022), 1543–1559 , arXiv: 2211.08529
|
1
[x]
|
|
2021 |
16. |
K. Atalikov, A. Zotov, “Field theory generalizations of two-body Calogero–Moser models in the form of Landau–Lifshitz equations”, J. Geom. Phys., 164 (2021), 104161 , 14 pp., arXiv: 2010.14297 ;
|
6
[x]
|
17. |
A. Grekov, A. Zotov, “Characteristic determinant and Manakov triple for the double elliptic integrable system”, SciPost Phys., 10:3 (2021), 055 , 34 pp., arXiv: 2010.08077 ;
|
4
[x]
|
18. |
И. А. Сечин, А. В. Зотов, “Квадратичные алгебры, построенные по $SL(NM)$ эллиптическим квантовым $R$-матрицам”, ТМФ, 208:2 (2021), 355–364 ; I. A. Sechin, A. V. Zotov, Theoret. and Math. Phys., 208:2 (2021), 1156–1164 , arXiv: 2104.04963
|
3
[x]
|
19. |
Е. С. Трунина, А. В. Зотов, “Многополюсное обобщение для эллиптических моделей интегрируемых взаимодействующих волчков”, ТМФ, 209:1 (2021), 16–45 ; E. S. Trunina, A. V. Zotov, “Multi-pole extension of the elliptic models of interacting integrable tops”, Theoret. and Math. Phys., 209:1 (2021), 1331–1356 , arXiv: 2104.08982
|
5
[x]
|
20. |
A. Levin, M. Olshanetsky, A. Zotov, “Generalizations of parabolic Higgs bundles, real structures, and integrability”, J. Math. Phys., 62:10 (2021), 103502 , 28 pp., arXiv: 2012.15529 ;
|
1
[x]
|
21. |
A. Grekov, A. Zotov, “On Cherednik and Nazarov–Sklyanin large $N$ limit construction for integrable many-body systems with elliptic dependence on momenta”, JHEP, 2021:12 (2021), 062 , 43 pp., arXiv: 2102.06853 ;
|
1
[x]
|
|
2020 |
22. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical duality for Gaudin magnets with boundary”, Nuclear Phys. B, 952 (2020), 114931 , 20 pp., arXiv: 1911.11792 ;
|
3
[x]
|
23. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetrization of elliptic $R$-matrices”, J. Phys. A, 53:18 (2020), 185202 , 16 pp., arXiv: 1910.05712 ;
|
1
[x]
|
24. |
N. Slavnov, A. Zabrodin, A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model”, JHEP, 2020:6 (2020), 123 , 53 pp., arXiv: 2005.11224 ;
|
9
[x]
|
25. |
И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67 ; I. A. Sechin, A. V. Zotov, “Integrable system of generalized relativistic interacting tops”, Theoret. and Math. Phys., 205:1 (2020), 1292–1303 , arXiv: 2011.09599
|
5
[x]
|
26. |
A. Levin, M. Olshanetsky, A. Zotov, “Odd supersymmetric Kronecker elliptic function and Yang–Baxter equations”, J. Math. Phys., 61 (2020), 103504 , 9 pp., arXiv: 1910.01814 ; |
27. |
M. Vasilyev, A. Zabrodin, A. Zotov, “Quantum-classical correspondence for gl(1|1) supersymmetric Gaudin magnet with boundary”, J. Phys. A, 53:49 (2020), 494002 , 20 pp., arXiv: 2006.06717 ;
|
1
[x]
|
28. |
Современные проблемы математической и теоретической физики, Сборник статей. К 80-летию со дня рождения академика Андрея Алексеевича Славнова, Труды МИАН, 309, ред. А. К. Погребков, Н. А. Славнов, А. А. Белавин, А. В. Зотов, И. В. Тютин, МИАН, М., 2020 , 346 с. |
|
2019 |
29. |
A. Grekov, A. Zabrodin, A. Zotov, “Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nuclear Phys. B, 939 (2019), 174–190 , arXiv: 1810.12658
|
6
[x]
|
30. |
Ю. Черняков, С. Харчев, А. Левин, М. Ольшанецкий, А. Зотов, “Обобщенные модели Калоджеро и Тоды”, Письма в ЖЭТФ, 109:2 (2019), 131–138 ; Yu. Chernyakov, S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Generalized Calogero and Toda models”, JETP Letters, 109:2 (2019), 136–143 |
31. |
И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190 ; I. A. Sechin, A. V. Zotov, “${\rm GL}_{NM}$ quantum dynamical $R$-matrix based on solution of the associative Yang–Baxter equation”, Russian Math. Surveys, 74:4 (2019), 767–769 , arXiv: 1905.08724
|
7
[x]
|
32. |
T. Krasnov, A. Zotov, “Trigonometric Integrable Tops from Solutions of Associative Yang–Baxter Equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697 , arXiv: 1812.04209
|
13
[x]
|
33. |
А. В. Зотов, “Релятивистские взаимодействующие интегрируемые эллиптические волчки”, ТМФ, 201:2 (2019), 173–190 ; A. V. Zotov, “Relativistic interacting integrable elliptic tops”, Theoret. and Math. Phys., 201:2 (2019), 1563–1578 , arXiv: 1910.08246
|
6
[x]
|
34. |
A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 2019:10 (2019), 81 , 33 pp., arXiv: 1905.07820
|
8
[x]
|
35. |
M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002 , 45 pp., arXiv: 1804.02777
|
9
[x]
|
|
2018 |
36. |
I. Sechin, A. Zotov, “R-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7 , arXiv: 1801.08908
|
14
[x]
|
37. |
A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51 (2018), 315202 , 26 pp., arXiv: 1801.00245
|
6
[x]
|
38. |
A. V. Zabrodin, A. V. Zotov, “Self–dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nuclear Phys. B, 927 (2018), 550–565 , arXiv: 1711.01036
|
8
[x]
|
39. |
А. В. Зотов, “Модель Калоджеро–Мозера и $R$-матричные тождества”, ТМФ, 197:3 (2018), 417–434 ; A. V. Zotov, “Calogero–Moser model and $R$-matrix identities”, Theoret. and Math. Phys., 197:3 (2018), 1755–1770
|
8
[x]
|
40. |
S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Quasi-compact Higgs bundles and Calogero–Sutherland systems with two types of spins”, J. Math. Phys., 59:10 (2018), 103509 , 36 pp., arXiv: 1712.08851
|
11
[x]
|
|
2017 |
41. |
A. Zabrodin, A. Zotov, “KZ-Calogero correspondence revisited”, J. Phys. A, 50 (2017), 205202 , 12 pp., arXiv: 1701.06074
|
8
[x]
|
42. |
А. В. Забродин, А. В. Зотов, А. Н. Ляшик, Д. С. Руднева, “Асимметричная шестивершинная модель и классическая система частиц Рейсенарса–Шнайдера”, ТМФ, 192:2 (2017), 235–249 ; A. V. Zabrodin, A. V. Zotov, A. N. Liashyk, D. S. Rudneva, “Asymmetric six-vertex model and the classical Ruijsenaars–Schneider system of particles”, Theoret. and Math. Phys., 192:2 (2017), 1141–1153 , arXiv: 1611.02497
|
3
[x]
|
43. |
A. Zabrodin, A. Zotov, “QKZ–Ruijsenaars correspondence revisited”, Nuclear Phys. B, 922 (2017), 113–125 , arXiv: 1704.04527
|
7
[x]
|
44. |
S. Kharchev, A. Levin, M. Olshanetsky, A. Zotov, “Calogero–Sutherland system with two types interacting spins”, Письма в ЖЭТФ, 106:3 (2017), 173–174 , arXiv: 1706.08793 ; JETP Letters, 106:3 (2017), 179–183
|
6
[x]
|
45. |
A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169 , 22 pp., arXiv: 1706.05601
|
7
[x]
|
|
2016 |
46. |
A. Levin, M. Olshanetsky, A. Zotov, “Yang–Baxter equations with two Planck constants”, J. Phys. A: Math. Theor., 49:1 (2016), 14003 , 19 pp., Exactly Solved Models and Beyond: a special issue in honour of R. J. Baxter's 75th birthday, arXiv: 1507.02617
|
7
[x]
|
47. |
M. Beketov, A. Liashyk, A. Zabrodin, A. Zotov, “Trigonometric version of quantum–classical duality in integrable systems”, Nuclear Phys. B, 903 (2016), 150–163 , arXiv: 1510.07509
|
18
[x]
|
48. |
Ivan Sechin, Andrei Zotov, “Associative Yang-Baxter equation for quantum (semi-)dynamical R-matrices”, J. Math. Phys., 57:5 (2016), 53505 , 14 pp., arXiv: 1511.08761
|
5
[x]
|
49. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Геометрия расслоений Хиггса над эллиптическими кривыми, связанная с автоморфизмами простых алгебр Ли, системы Калоджеро–Мозера и уравнения Книжника–Замолодчикова–Бернара”, ТМФ, 188:2 (2016), 185–222 , arXiv: 1507.04265 ; A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations”, Theoret. and Math. Phys., 188:2 (2016), 1121–1154 , arXiv: 1507.04265 |
50. |
Andrey Levin, Mikhail Olshanetsky, Andrei Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A, 49:39 (2016), 395202 , 26 pp., arXiv: 1603.06101
|
12
[x]
|
51. |
А. В. Зотов, “Старшие аналоги условия унитарности для квантовых $R$-матриц”, ТМФ, 189:2 (2016), 176–185 , arXiv: 1511.02468 ; A. V. Zotov, “Higher-order analogues of the unitarity condition for quantum $R$-matrices”, Theoret. and Math. Phys., 189:2 (2016), 1554–1562
|
7
[x]
|
|
2015 |
52. |
G. Aminov, H. W. Braden, A. Mironov, A. Morozov, A. Zotov, “Seiberg-Witten curves and double-elliptic integrable systems”, J. High Energy Phys., 2015, no. 1, 033 , 15 pp., arXiv: 1410.0698
|
16
[x]
|
53. |
G. Aminov, A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations”, Письма в ЖЭТФ, 101:9 (2015), 723–729 ; G. Aminov, A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations”, JETP Letters, 101:9 (2015), 648–655 |
54. |
A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 , arXiv: 1212.5813
|
4
[x]
|
55. |
Zengo Tsuboi, Anton Zabrodin, Andrei Zotov, “Supersymmetric quantum spin chains and classical integrable systems”, J. High Energy Phys., 2015, no. 5, 086 , 43 pp., arXiv: 1412.2586
|
14
[x]
|
56. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Квантовые $R$-матрицы Бакстера–Белавина и многомерные пары Лакса для уравнения Пенлеве VI”, ТМФ, 184:1 (2015), 41–56 ; A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Quantum Baxter–Belavin $R$-matrices and multidimensional Lax pairs for Painlevé VI”, Theoret. and Math. Phys., 184:1 (2015), 924–939 , arXiv: 1501.07351
|
19
[x]
|
|
2014 |
57. |
A. Gorsky, A. Zabrodin, A. Zotov, “Spectrum of quantum transfer matrices via classical many-body systems”, J. High Energy Phys., 2014, no. 1, 070 , 28 pp., arXiv: 1310.6958
|
25
[x]
|
58. |
А. М. Левин, М. А. Ольшанецкий, А. В. Зотов, “Классификация изомонодромных задач на эллиптических кривых”, УМН, 69:1(415) (2014), 39–124 ; A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Classification of isomonodromy problems on elliptic curves”, Russian Math. Surveys, 69:1 (2014), 35–118 , arXiv: 1311.4498
|
18
[x]
|
59. |
G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207 , 19 pp., arXiv: 1402.3189
|
19
[x]
|
60. |
A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, J. High Energy Phys., 2014, no. 7, 012 , arXiv: 1405.7523
|
30
[x]
|
61. |
A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and soliton equations related to eleven-vertex $R$-matrix”, Nuclear Physics B, 887 (2014), 400–422 , arXiv: 1406.2995
|
20
[x]
|
62. |
A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 2014, no. 10, 109 , 29 pp., arXiv: 1408.6246v2
|
22
[x]
|
|
2013 |
63. |
A. D. Mironov, A. Yu. Morozov, Y. Zenkevich, A. V. Zotov, “Spectral duality in integrable systems from AGT conjecture”, Письма в ЖЭТФ, 97:1 (2013), 49–55 , arXiv: 1204.0913 ; JETP Letters, 97:1 (2013), 45–51
|
64
[x]
|
64. |
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, “Spectral duality between Heisenberg chain and Gaudin model”, Lett. Math. Phys., 103:3 (2013), 299–329 , arXiv: 1206.6349
|
59
[x]
|
65. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb C)$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201 , 25 pp., arXiv: 1208.5750
|
17
[x]
|
66. |
А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 ; A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338
|
26
[x]
|
67. |
G. Aminov, A. Mironov, A. Morozov, A. Zotov, “Three-particle integrable systems with elliptic dependence on momenta and theta function identities”, Phys. Lett. B, 726:4-5 (2013), 802–808 , arXiv: 1307.1465
|
17
[x]
|
68. |
A. Mironov, A. Morozov, B. Runov, Y. Zenkevich, A. Zotov, “Spectral dualities in XXZ spin chains and five dimensional gauge theories”, J. High Energy Phys., 2013, no. 12, 034 , 11 pp., arXiv: 1307.1502
|
37
[x]
|
|
2012 |
69. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes and Hitchin systems. General construction”, Comm. Math. Phys., 316:1 (2012), 1–44 , arXiv: 1006.0702
|
18
[x]
|
70. |
A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence for Painlevé VI”, J. Math. Phys., 53:7 (2012), 073508 , 19 pp., arXiv: 1107.5672
|
20
[x]
|
71. |
A. Zabrodin, A. Zotov, “Quantum Painlevé-Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507 , 19 pp., arXiv: 1107.5672
|
28
[x]
|
72. |
A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Calogero-Moser systems for simple Lie groups and characteristic classes of bundles”, J. Geom. Phys., 62:8 (2012), 1810–1850 , arXiv: 1007.4127
|
18
[x]
|
73. |
Andrey M. Levin, Mikhail A. Olshanetsky, Andrey V. Smirnov, Andrei V. Zotov, “Hecke Transformations of Conformal Blocks in WZW Theory. I. KZB Equations for Non-Trivial Bundles”, SIGMA, 8 (2012), 095 , 37 pp., arXiv: 1207.4386
|
10
[x]
|
|
2011 |
74. |
Andrei V. Zotov, “1+1 Gaudin Model”, SIGMA, 7 (2011), 067 , 26 pp., arXiv: 1012.1072
|
13
[x]
|
|
2009 |
75. |
Andrey M. Levin, Mikhail A. Olshanetsky, Andrei V. Zotov, “Monopoles and Modifications of Bundles over Elliptic Curves”, SIGMA, 5 (2009), 065 , 22 pp., arXiv: 0811.3056
|
9
[x]
|
|
2008 |
76. |
А. В. Зотов, А. М. Левин, М. А. Ольшанецкий, Ю. Б. Черняков, “Квадратичные алгебры, связанные с эллиптическими кривыми”, ТМФ, 156:2 (2008), 163–183 ; A. V. Zotov, A. M. Levin, M. A. Olshanetsky, Yu. B. Chernyakov, “Quadratic algebras related to elliptic curves”, Theoret. and Math. Phys., 156:2 (2008), 1103–1122 , arXiv: 0710.1072
|
16
[x]
|
|
2007 |
77. |
A. Levin, A. Zotov, “On rational and elliptic forms of Painlevé VI equation”, Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2, 221, Amer. Math. Soc., Providence, RI, 2007, 173–183
|
6
[x]
|
|
2006 |
78. |
А. В. Зотов, А. М. Левин, “Интегрируемая система взаимодействующих эллиптических волчков”, ТМФ, 146:1 (2006), 55–64 ; A. V. Zotov, A. M. Levin, “Integrable Model of Interacting Elliptic Tops”, Theoret. and Math. Phys., 146:1 (2006), 45–52
|
21
[x]
|
79. |
Yu. Chernyakov, A. M. Levin, M. Olshanetsky, A. Zotov, “Elliptic Schlesinger system and Painlevé VI”, J. Phys. A: Math. Gen., 39:39 (2006), 12083–12101 , arXiv: nlin/0602043
|
18
[x]
|
80. |
A. M. Levin, M. A. Olshanetsky, A. V. Zotov, “Painlevé VI, rigid tops and reflection equation”, Comm. Math. Phys., 268:1 (2006), 67–103 , arXiv: math/0508058
|
29
[x]
|
81. |
А. В. Зотов, “Классические интегрируемые системы и их теоретико-полевые обобщения”, Физика элементарных частиц и атомного ядра, 37:3 (2006), 759–842 http://www1.jinr.ru/Pepan/2006-v37/v-37-3/pdf/v-37-3_06.pdf ; A. V. Zotov, “Classical integrable systems and their field-theoretical generalizations”, Physics of Particles and Nuclei, 37:3 (2006), 400-443
|
8
|
|
2005 |
82. |
M. A. Olshanetsky, A. V. Zotov, “Isomonodromic problems on elliptic curve, rigid tops and reflection equations”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, eds. M. Noumi, K. Takasaki, Kobe University, Japan, 2005, 149-172 http://www.math.kobe-u.ac.jp/publications/rlm18/10.pdf |
|
2004 |
83. |
A. Zotov, “Elliptic linear problem for the Calogero-Inozemtsev model and Painlevé VI equation”, Lett. Math. Phys., 67:2 (2004), 153–165 , arXiv: hep-th/0310260
|
21
[x]
|
|
2003 |
84. |
A. Zotov, “Elliptic linear problem for Painlevé VI equation with spectral parameter”, Quantum groups and integrable systems, Czechoslovak J. Phys., 53:11 (2003), 1147–1152
|
1
[x]
|
85. |
H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, A. V. Zotov, “Classical $r$-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions”, J. Phys. A, 36:25 (2003), 6979–7000 , arXiv: hep-th/0301121
|
19
[x]
|
86. |
A. M. Levin, M. A. Olshanetsky, A. Zotov, “Hitchin systems—symplectic Hecke correspondence and two-dimensional version”, Comm. Math. Phys., 236:1 (2003), 93–133 , arXiv: nlin/0110045
|
67
[x]
|
|
2001 |
87. |
А. В. Зотов, Ю. Б. Черняков, “Интегрируемые многочастичные системы, полученные с использованием предела Иноземцева”, ТМФ, 129:2 (2001), 258–277 , arXiv: hep-th/0102069 ; A. V. Zotov, Yu. B. Chernyakov, “Integrable Many-Body Systems via the Inosemtsev Limit”, Theoret. and Math. Phys., 129:2 (2001), 1526–1542
|
13
[x]
|
88. |
A. Zotov, “On relation between Weyl and Kontsevich quantum products. Direct evaluation up to the $\hslash^3$-order”, Modern Phys. Lett. A, 16:10 (2001), 615–625
|
10
[x]
|
|