Аннотация:
Пикнометрическим методом в температурном интервале 29732973–33733373 K экспериментально измерена плотность UO2UO2–ZrO2ZrO2-расплава (атомное отношение U/Zr=1.528U/Zr=1.528). Найденная температурная зависимость плотности имеет вид
ρ(T)=(7.0±0.01)−(4.5±0.4)×10−4×(T−2973K),г/см3.
Измеренная температурная зависимость позволяет рассчитывать значения плотностей UO2–ZrO2-расплавов в зависимости от температуры и состава для любого атомного соотношения U/Zr.
Образец цитирования:
В. Г. Асмолов, В. Н. Загрязкин, Е. В. Астахова, В. Ю. Вишневский, Е. К. Дьяков, А. Ю. Котов, В. М. Репников, “Плотность UO2–ZrO2-расплавов”, ТВТ, 41:5 (2003), 714–719; High Temperature, 41:5 (2003), 627–632
Yaopeng Gong, Li Zhang, Yidan Yuan, Weimin Ma, Shanfang Huang, Chuanjun Li, Bangyue Yin, Xuan Wang, Jingru Ren, Zhehao Qu, Erhui Chen, “Thermophysical properties of UO2-ZrO2 melt measured by aerodynamic levitation”, Journal of Nuclear Materials, 602 (2024), 155356
Kuanyshbek Toleubekov, Mazhyn Skakov, Viktor Baklanov, Maxat Bekmuldin, Assan Akaev, “Method of out-of-pile high-temperature tests of low-melting materials in conditions of modeling a severe nuclear reactor accident”, International Journal of Advanced Nuclear Reactor Design and Technology, 2024
M. К. Skakov, K. O. Toleubekov, M. K. Bekmuldin, A. S. Akaev, “DEVELOPMENT OF A THERMOPHYSICAL MODEL FOR THE EXPERIMENTAL ASSEMBLY OF THE VCG-135 TEST BENCH TO STUDY THE INTERACTION OF CORIUM WITH METAL-COOLER IN THE CONDITIONS OF A SEVERE ACCIDENT”, jour, 2024, № 4, 5
M. K. Skakov, V. V. Baklanov, K. O. Toleubekov, A. S. Akaev, M. K. Bekmuldin, A. V. Gradoboev, “MODELING OF THE CORIUM AND METALS – COOLERS INTERACTION IN A CORE CATCHER OF A LIGHT WATER REACTOR”, jour, 2023, no. 2, 49
Mazhyn Skakov, Viktor Baklanov, Assan Akaev, Ivan Kukushkin, Maxat Bekmuldin, Kuanyshbek Toleubekov, Alexandr Gradoboev, Olga Stepanova, “On the Possibility of Forming a Corium Pool by Induction Heating in a Melt Trap of the Lava-B Facility”, Applied Sciences, 13:4 (2023), 2480
Beigbeder T., Bourasseau E., Rushton M., “Thermophysical Properties of Liquid (U, Zr)O-2 By Molecular Dynamics”, Mol. Simul., 47:18 (2021), 1502–1508
Sudo A., Meszaros B., Poznyak I., Sato T., Nagae Yu., Kurata M., “Segregation Behavior of FE and Gd in Molten Corium During Solidification Progress”, J. Nucl. Mater., 533 (2020), 152093
Pierre Perrot, Oleksandr Dovbenko, Liya Dreval, “O-U-Zr Ternary Phase Diagram Evaluation”, MSI Eureka, 84 (2020), 10.17360.2.6
Kondo T., Muta H., Kurosaki K., Kargl F., Yamaji A., Furuya M., Ohishi Yu., “Density and Viscosity of Liquid Zro2 Measured By Aerodynamic Levitation Technique”, Heliyon, 5:7 (2019), e02049
Alderman O.L.G., Benmore C.J., Weber J.K.R., Skinner L.B., Tamalonis A.J., Sendelbach S., Hebden A., Williamson M.A., “Corium Lavas: Structure and Properties of Molten Uo2-Zro2 Under Meltdown Conditions”, Sci Rep, 8 (2018), 2434
Chai P., Kondo M., Erkan N., Okamoto K., “Numerical Simulation of Mcci Based on Mps Method With Different Types of Concrete”, Ann. Nucl. Energy, 103 (2017), 227–237
Chai P., Kondo M., Erkan N., Okamoto K., “Numerical Simulation of 2D Ablation Profile in Cci-2 Experiment By Moving Particle Semi-Implicit Method”, Nucl. Eng. Des., 301 (2016), 15–23
Pierre Perrot, Landolt-Börnstein - Group IV Physical Chemistry, 11E3, Refractory metal systems, 2010, 585
Landolt-Börnstein - Group IV Physical Chemistry, 11C4, Non-Ferrous Metal Systems. Part 4, 2007, 429