Abstract:
The turbulent flow in a pipe with an elliptical cross section is directly simulated at Re=4000 (where the Reynolds number Re is calculated in terms of the mean velocity and the hydraulic diameter). The incompressible Navier–Stokes equations are solved in curvilinear orthogonal coordinates by using a central-difference approximation in space and a third-order accurate semi-implicit Runge–Kutta method for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and of the pressure gradient in the kinetic energy production. The distributions of the mean and fluctuation characteristics of the turbulent motion over the pipe's cross section are computed.
Key words:
Navier–Stokes equations, difference discretization, semi-implicit Runge–Kutta method, direct numerical simulation of turbulent flows, flow in elliptical pipe, turbulent secondary flows.
Citation:
T. V. Voronova, N. V. Nikitin, “Direct numerical simulation of the turbulent flow in an elliptical pipe”, Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006), 1453–1461; Comput. Math. Math. Phys., 46:8 (2006), 1378–1386
\Bibitem{VorNik06}
\by T.~V.~Voronova, N.~V.~Nikitin
\paper Direct numerical simulation of the turbulent flow in an elliptical pipe
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 8
\pages 1453--1461
\mathnet{http://mi.mathnet.ru/zvmmf430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2287362}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 8
\pages 1378--1386
\crossref{https://doi.org/10.1134/S0965542506080094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748335520}
Linking options:
https://www.mathnet.ru/eng/zvmmf430
https://www.mathnet.ru/eng/zvmmf/v46/i8/p1453
This publication is cited in the following 12 articles:
Zhengxuan Luan, Liguo Zhong, Kuibin Wang, Hua Long, Yao Wang, Zijun Gao, Jixiang Li, “Kinetic energy correction factor model for elliptical engineering pipelines under laminar–turbulent transition flow”, Physics of Fluids, 37:2 (2025)
Rosas R.H., Wang B.-Ch., “Dns Study of Turbulent Heat Transfer in An Elliptical Pipe Flow Subjected to System Rotation About the Major Axis”, Int. J. Heat Mass Transf., 184 (2022), 122230
Rosas R.H., Zhang Zh.-P., Wang B.-Ch., “Direct Numerical Simulation of Turbulent Elliptical Pipe Flow Under System Rotation About the Major Axis”, Phys. Rev. Fluids, 6:8 (2021), 084609
Nikitin N., “Turbulent Secondary Flows in Channels With No-Slip and Shear-Free Boundaries”, J. Fluid Mech., 917 (2021), A24
Nikitin V N. Popelenskaya V N. Stroh A., “Prandtl'S Secondary Flows of the Second Kind. Problems of Description, Prediction, and Simulation”, Fluid Dyn., 56:4 (2021), 513–538
Krasnopolsky B.I., “Optimal Strategy For Modelling Turbulent Flows With Ensemble Averaging on High Performance Computing Systems”, Lobachevskii J. Math., 39:4 (2018), 533–542
Krasnopolsky B.I., “An Approach For Accelerating Incompressible Turbulent Flow Simulations Based on Simultaneous Modelling of Multiple Ensembles”, Comput. Phys. Commun., 229 (2018), 8–19
Vidal A., Vinuesa R., Schlatter P., Nagib H.M., “Turbulent Rectangular Ducts With Minimum Secondary Flow”, Int. J. Heat Fluid Flow, 72 (2018), 317–328
Vidal A., Nagib H.M., Schlatter P., Vinuesa R., “Secondary Flow in Spanwise-Periodic in-Phase Sinusoidal Channels”, J. Fluid Mech., 851 (2018), 288–316
Khajehhasani S., Jubran B.A., “A Numerical Evaluation of the Performance of Film Cooling from a Circular Exit Shaped Hole with Sister Holes Influence”, Heat Transf. Eng., 37:2 (2016), 183–197
Argyropoulos C.D., Markatos N.C., “Recent Advances on the Numerical Modelling of Turbulent Flows”, Appl. Math. Model., 39:2 (2015), 693–732
Voronova T.V. Nikitin N.V., “Results of Direct Numerical Simulation of Turbulent Flow in a Pipe of Elliptical Cross-Section”, Fluid Dyn., 42:2 (2007), 201–211