Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, 2006, Volume 46, Number 8, Pages 1453–1461 (Mi zvmmf430)  

This article is cited in 12 scientific papers (total in 12 papers)

Direct numerical simulation of the turbulent flow in an elliptical pipe

T. V. Voronovaa, N. V. Nikitinb

a Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119992, Russia
b Institute of Mechanics, Moscow State University, Michurinskii pr. 1, Moscow, 119192, Russia
References:
Abstract: The turbulent flow in a pipe with an elliptical cross section is directly simulated at Re=4000 (where the Reynolds number Re is calculated in terms of the mean velocity and the hydraulic diameter). The incompressible Navier–Stokes equations are solved in curvilinear orthogonal coordinates by using a central-difference approximation in space and a third-order accurate semi-implicit Runge–Kutta method for time integration. The discrete equations inherit some properties of the original differential equations, in particular, the neutrality of the convective terms and of the pressure gradient in the kinetic energy production. The distributions of the mean and fluctuation characteristics of the turbulent motion over the pipe's cross section are computed.
Key words: Navier–Stokes equations, difference discretization, semi-implicit Runge–Kutta method, direct numerical simulation of turbulent flows, flow in elliptical pipe, turbulent secondary flows.
Received: 06.12.2005
English version:
Computational Mathematics and Mathematical Physics, 2006, Volume 46, Issue 8, Pages 1378–1386
DOI: https://doi.org/10.1134/S0965542506080094
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: T. V. Voronova, N. V. Nikitin, “Direct numerical simulation of the turbulent flow in an elliptical pipe”, Zh. Vychisl. Mat. Mat. Fiz., 46:8 (2006), 1453–1461; Comput. Math. Math. Phys., 46:8 (2006), 1378–1386
Citation in format AMSBIB
\Bibitem{VorNik06}
\by T.~V.~Voronova, N.~V.~Nikitin
\paper Direct numerical simulation of the turbulent flow in an elliptical pipe
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2006
\vol 46
\issue 8
\pages 1453--1461
\mathnet{http://mi.mathnet.ru/zvmmf430}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2287362}
\transl
\jour Comput. Math. Math. Phys.
\yr 2006
\vol 46
\issue 8
\pages 1378--1386
\crossref{https://doi.org/10.1134/S0965542506080094}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748335520}
Linking options:
  • https://www.mathnet.ru/eng/zvmmf430
  • https://www.mathnet.ru/eng/zvmmf/v46/i8/p1453
  • This publication is cited in the following 12 articles:
    1. Zhengxuan Luan, Liguo Zhong, Kuibin Wang, Hua Long, Yao Wang, Zijun Gao, Jixiang Li, “Kinetic energy correction factor model for elliptical engineering pipelines under laminar–turbulent transition flow”, Physics of Fluids, 37:2 (2025)  crossref
    2. Rosas R.H., Wang B.-Ch., “Dns Study of Turbulent Heat Transfer in An Elliptical Pipe Flow Subjected to System Rotation About the Major Axis”, Int. J. Heat Mass Transf., 184 (2022), 122230  crossref  isi
    3. Rosas R.H., Zhang Zh.-P., Wang B.-Ch., “Direct Numerical Simulation of Turbulent Elliptical Pipe Flow Under System Rotation About the Major Axis”, Phys. Rev. Fluids, 6:8 (2021), 084609  crossref  isi
    4. Nikitin N., “Turbulent Secondary Flows in Channels With No-Slip and Shear-Free Boundaries”, J. Fluid Mech., 917 (2021), A24  crossref  mathscinet  isi  scopus
    5. Nikitin V N. Popelenskaya V N. Stroh A., “Prandtl'S Secondary Flows of the Second Kind. Problems of Description, Prediction, and Simulation”, Fluid Dyn., 56:4 (2021), 513–538  crossref  mathscinet  isi
    6. Krasnopolsky B.I., “Optimal Strategy For Modelling Turbulent Flows With Ensemble Averaging on High Performance Computing Systems”, Lobachevskii J. Math., 39:4 (2018), 533–542  crossref  mathscinet  isi  scopus
    7. Krasnopolsky B.I., “An Approach For Accelerating Incompressible Turbulent Flow Simulations Based on Simultaneous Modelling of Multiple Ensembles”, Comput. Phys. Commun., 229 (2018), 8–19  crossref  isi  scopus
    8. Vidal A., Vinuesa R., Schlatter P., Nagib H.M., “Turbulent Rectangular Ducts With Minimum Secondary Flow”, Int. J. Heat Fluid Flow, 72 (2018), 317–328  crossref  isi
    9. Vidal A., Nagib H.M., Schlatter P., Vinuesa R., “Secondary Flow in Spanwise-Periodic in-Phase Sinusoidal Channels”, J. Fluid Mech., 851 (2018), 288–316  crossref  isi
    10. Khajehhasani S., Jubran B.A., “A Numerical Evaluation of the Performance of Film Cooling from a Circular Exit Shaped Hole with Sister Holes Influence”, Heat Transf. Eng., 37:2 (2016), 183–197  crossref  isi  elib  scopus
    11. Argyropoulos C.D., Markatos N.C., “Recent Advances on the Numerical Modelling of Turbulent Flows”, Appl. Math. Model., 39:2 (2015), 693–732  crossref  mathscinet  isi  elib  scopus
    12. Voronova T.V. Nikitin N.V., “Results of Direct Numerical Simulation of Turbulent Flow in a Pipe of Elliptical Cross-Section”, Fluid Dyn., 42:2 (2007), 201–211  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Statistics & downloads:
    Abstract page:612
    Full-text PDF :280
    References:65
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025