Abstract:
New variant of Gehring lemma is proved. This modification arised in the investigation of nonstationary problem on inhomogeneous incompressible fluids.
Citation:
A. A. Arkhipova, O. A. Ladyzhenskaya, “On a modification of Gehring lemma”, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Zap. Nauchn. Sem. POMI, 259, POMI, St. Petersburg, 1999, 7–18; J. Math. Sci. (New York), 109:5 (2002), 1805–1813
\Bibitem{ArkLad99}
\by A.~A.~Arkhipova, O.~A.~Ladyzhenskaya
\paper On a modification of Gehring lemma
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 259
\pages 7--18
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1048}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754355}
\zmath{https://zbmath.org/?q=an:0979.35062}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 5
\pages 1805--1813
\crossref{https://doi.org/10.1023/A:1014429206000}
Linking options:
https://www.mathnet.ru/eng/znsl1048
https://www.mathnet.ru/eng/znsl/v259/p7
This publication is cited in the following 6 articles:
A. A. Arkhipova, “Global Solvability of the Cauchy-Dirichlet Problem for a Class of Strongly Nonlinear Parabolic Systems”, J Math Sci, 250:2 (2020), 201
St. Petersburg Math. J., 31:2 (2019), 273–296
Pascal Auscher, Simon Bortz, Moritz Egert, Olli Saari, “On regularity of weak solutions to linear parabolic systems with measurable coefficients”, Journal de Mathématiques Pures et Appliquées, 121 (2019), 216
St. Petersburg Math. J., 30:2 (2019), 181–202
Consiglieri L., “Radiative effects for some bidimensional thermoelectric problems”, Adv. Nonlinear Anal., 5:4 (2016), 347–366
Softova L.G., “L-P-Integrability of the Gradient of Solutions to Quasilinear Systems with Discontinuous Coefficients”, Differ. Integral Equ., 26:9-10 (2013), 1091–1104