Abstract:
The minimum problem ∫Ωf(∇u)dx⟶min among mappings u:Rn⊃Ω→RN with prescribed Dirichlet boundary data and for integrands f of linear growth in general fails to have solutions in the Sobolev space W11. We therefore concentrate
on the dual variational problem which admits a unique maximizer σ and prove partial Hölder continuity of σ. Moreover, we study smoothness properties of L1-limits of minimizing sequences of the original problem.
Citation:
M. Fuchs, M. Bildhauer, “Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Zap. Nauchn. Sem. POMI, 259, POMI, St. Petersburg, 1999, 46–66; J. Math. Sci. (New York), 109:5 (2002), 1835–1850
\Bibitem{FucBil99}
\by M.~Fuchs, M.~Bildhauer
\paper Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 259
\pages 46--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754357}
\zmath{https://zbmath.org/?q=an:0977.49025}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 5
\pages 1835--1850
\crossref{https://doi.org/10.1023/A:1014436106908}
Linking options:
https://www.mathnet.ru/eng/znsl1050
https://www.mathnet.ru/eng/znsl/v259/p46
This publication is cited in the following 10 articles:
Muneo HORI, Hiroki MOTOYAMA, “APPLICATION OF ALTERNATIVE FORMULATION OF ELASTOPLASTICITY TO 1D PROBLEMS”, Journal of JSCE, 12:1 (2024), n/a
Beck L., Bulicek M., Gmeineder F., “On a Neumann Problem For Variational Functionals of Linear Growth”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 21:SI (2020), 695–737
Scheven Ch., Schmidt T., “On the Dual Formulation of Obstacle Problems For the Total Variation and the Area Functional”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 35:5 (2018), 1175–1207
M. Bildhauer, M. Fuchs, J. Müller, X. Zhong, “On the local boundedness of generalized minimizers of variational problems with linear growth”, Annali di Matematica, 197:4 (2018), 1117
Beck L., Bulicek M., Malek J., Suli E., “On the Existence of Integrable Solutions to Nonlinear Elliptic Systems and Variational Problems With Linear Growth”, Arch. Ration. Mech. Anal., 225:2 (2017), 717–769
Beck L., Schmidt T., “Convex Duality and Uniqueness For Bv-Minimizers”, J. Funct. Anal., 268:10 (2015), 3061–3107
Bildhauer M., “Two Dimensional Variational Problems with Linear Growth”, Manuscr. Math., 110:3 (2003), 325–342
Bildhauer M., “Convex Variational Problems - Linear, Nearly Linear and Anisotropic Growth Conditions”, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Lect. Notes Math., 1818, Springer-Verlag Berlin, 2003, 1+
Bildhauer M., “A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth”, J. Convex Anal., 9:1 (2002), 117–137
Bildhauer M., “A Note on Degenerate Variational Problems with Linear Growth”, Z. Anal. ihre. Anwend., 20:3 (2001), 589–598