Loading [MathJax]/jax/output/CommonHTML/jax.js
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1999, Volume 259, Pages 46–66 (Mi znsl1050)  

This article is cited in 10 scientific papers (total in 10 papers)

Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth

M. Fuchs, M. Bildhauer

Saarland University
Abstract: The minimum problem Ωf(u)dxmin among mappings u:RnΩRN with prescribed Dirichlet boundary data and for integrands f of linear growth in general fails to have solutions in the Sobolev space W11. We therefore concentrate on the dual variational problem which admits a unique maximizer σ and prove partial Hölder continuity of σ. Moreover, we study smoothness properties of L1-limits of minimizing sequences of the original problem.
Received: 05.06.1999
English version:
Journal of Mathematical Sciences (New York), 2002, Volume 109, Issue 5, Pages 1835–1850
DOI: https://doi.org/10.1023/A:1014436106908
Bibliographic databases:
UDC: 517.9
Language: English
Citation: M. Fuchs, M. Bildhauer, “Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth”, Boundary-value problems of mathematical physics and related problems of function theory. Part 30, Zap. Nauchn. Sem. POMI, 259, POMI, St. Petersburg, 1999, 46–66; J. Math. Sci. (New York), 109:5 (2002), 1835–1850
Citation in format AMSBIB
\Bibitem{FucBil99}
\by M.~Fuchs, M.~Bildhauer
\paper Regularity for dual solutions and for weak cluster points of minimizing sequences of variational problems with linear growth
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 1999
\vol 259
\pages 46--66
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1050}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1754357}
\zmath{https://zbmath.org/?q=an:0977.49025}
\transl
\jour J. Math. Sci. (New York)
\yr 2002
\vol 109
\issue 5
\pages 1835--1850
\crossref{https://doi.org/10.1023/A:1014436106908}
Linking options:
  • https://www.mathnet.ru/eng/znsl1050
  • https://www.mathnet.ru/eng/znsl/v259/p46
  • This publication is cited in the following 10 articles:
    1. Muneo HORI, Hiroki MOTOYAMA, “APPLICATION OF ALTERNATIVE FORMULATION OF ELASTOPLASTICITY TO 1D PROBLEMS”, Journal of JSCE, 12:1 (2024), n/a  crossref
    2. Beck L., Bulicek M., Gmeineder F., “On a Neumann Problem For Variational Functionals of Linear Growth”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 21:SI (2020), 695–737  isi
    3. Scheven Ch., Schmidt T., “On the Dual Formulation of Obstacle Problems For the Total Variation and the Area Functional”, Ann. Inst. Henri Poincare-Anal. Non Lineaire, 35:5 (2018), 1175–1207  crossref  mathscinet  zmath  isi  scopus
    4. M. Bildhauer, M. Fuchs, J. Müller, X. Zhong, “On the local boundedness of generalized minimizers of variational problems with linear growth”, Annali di Matematica, 197:4 (2018), 1117  crossref
    5. Beck L., Bulicek M., Malek J., Suli E., “On the Existence of Integrable Solutions to Nonlinear Elliptic Systems and Variational Problems With Linear Growth”, Arch. Ration. Mech. Anal., 225:2 (2017), 717–769  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Beck L., Schmidt T., “Convex Duality and Uniqueness For Bv-Minimizers”, J. Funct. Anal., 268:10 (2015), 3061–3107  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Bildhauer M., “Two Dimensional Variational Problems with Linear Growth”, Manuscr. Math., 110:3 (2003), 325–342  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Bildhauer M., “Convex Variational Problems - Linear, Nearly Linear and Anisotropic Growth Conditions”, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Lect. Notes Math., 1818, Springer-Verlag Berlin, 2003, 1+  crossref  mathscinet  isi
    9. Bildhauer M., “A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth”, J. Convex Anal., 9:1 (2002), 117–137  mathscinet  zmath  isi
    10. Bildhauer M., “A Note on Degenerate Variational Problems with Linear Growth”, Z. Anal. ihre. Anwend., 20:3 (2001), 589–598  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025