Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik YuUrGU. Ser. Mat. Model. Progr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2022, Volume 15, Issue 1, Pages 101–111
DOI: https://doi.org/10.14529/mmp220106
(Mi vyuru631)
 

This article is cited in 4 scientific papers (total in 4 papers)

Survey Articles

Invariant manifolds of semilinear Sobolev type equations

O. G. Kitaeva

South Ural State University, Chelyabinsk, Russian Federation
Full-text PDF (213 kB) Citations (4)
References:
Abstract: The article is devoted to a review of the author's results in studying the stability of semilinear Sobolev type equations with a relatively bounded operator. We consider the initial-boundary value problems for the Hoff equation, for the Oskolkov equation of nonlinear fluid filtration, for the Oskolkov equation of plane-parallel fluid flow, for the Benjamin–Bon–Mahoney equation. Under an appropriate choice of function spaces, these problems can be considered as special cases of the Cauchy problem for a semilinear Sobolev type equation. When studying stability, we use phase space methods based on the theory of degenerate (semi)groups of operators and apply a generalization of the classical Hadamard–Perron theorem. We show the existence of stable and unstable invariant manifolds modeled by stable and unstable invariant spaces of the linear part of the Sobolev type equations in the case when the phase space is simple and the relative spectrum and the imaginary axis do not have common points.
Keywords: Sobolev type equations, invariant manifolds, Oskolkov equations, Hoff equation, Benjamin–Bon–Mahoney equation.
Received: 03.11.2021
Document Type: Article
UDC: 517.9
MSC: 35S10, 60G99
Language: English
Citation: O. G. Kitaeva, “Invariant manifolds of semilinear Sobolev type equations”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022), 101–111
Citation in format AMSBIB
\Bibitem{Kit22}
\by O.~G.~Kitaeva
\paper Invariant manifolds of semilinear Sobolev type equations
\jour Vestnik YuUrGU. Ser. Mat. Model. Progr.
\yr 2022
\vol 15
\issue 1
\pages 101--111
\mathnet{http://mi.mathnet.ru/vyuru631}
\crossref{https://doi.org/10.14529/mmp220106}
Linking options:
  • https://www.mathnet.ru/eng/vyuru631
  • https://www.mathnet.ru/eng/vyuru/v15/i1/p101
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024