Abstract:
In this paper, we studied q-analogue of Sturm-Liouville boundary value problem on a finite interval having a discontinuity in an interior point. We proved that the q-Sturm-Liouville problem is self-adjoint in a modified Hilbert space. We investigated spectral properties of the eigenvalues and the eigenfunctions of q-Sturm-Liouville boundary value problem. We shown that eigenfunctions of q-Sturm-Liouville boundary value problem are in the form of a complete system. Finally, we proved a sampling theorem for integral transforms whose kernels are basic functions and the integral is of Jackson's type.
Keywords:q-Sturm-Liouville operator, self-adjoint operator, completeness of eigenfunctions, sampling theory.
Citation:
D. Karahan, K. R. Mamedov, “On a q-boundary value problem with discontinuity conditions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:4 (2021), 5–12