Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika", 2021, Volume 13, Issue 2, Pages 61–64
DOI: https://doi.org/10.14529/mmph210209
(Mi vyurm483)
 

Short communications

A short proof of completion theorem for metric spaces

U. Kaya

Bitlis Eren University, Bitlis, Turkey
References:
Abstract: The completion theorem for metric spaces is always proven using the space of Cauchy sequences. In this paper, we give a short and alternative proof of this theorem via Zorn's lemma. First, we give a way of adding one point to an incomplete space to get a chosen non-convergent Cauchy sequence convergent. Later, we show that every metric space has a completion by constructing a partial ordered set of metric spaces.
Keywords: Completion theorem, metric space, complete space, Zorn's lemma.
Received: 30.01.2021
Document Type: Article
UDC: 515.124
MSC: 54E50, 54A20, 06A06
Language: English
Citation: U. Kaya, “A short proof of completion theorem for metric spaces”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 13:2 (2021), 61–64
Citation in format AMSBIB
\Bibitem{Kay21}
\by U.~Kaya
\paper A short proof of completion theorem for metric spaces
\jour Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.
\yr 2021
\vol 13
\issue 2
\pages 61--64
\mathnet{http://mi.mathnet.ru/vyurm483}
\crossref{https://doi.org/10.14529/mmph210209}
Linking options:
  • https://www.mathnet.ru/eng/vyurm483
  • https://www.mathnet.ru/eng/vyurm/v13/i2/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :50
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024