Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 3, Pages 452–466
DOI: https://doi.org/10.35634/vm230305
(Mi vuu861)
 

MATHEMATICS

Inverse problems for the beam vibration equation with involution

A. B. Imanbetovaa, A. A. Sarsenbia, B. N. Seilbekovab

a M. O. Auezov South Kazakhstan State University
b South Kazakhstan State Pedagogical University, Republic of Kazakhstan, Shymkent, ul. A. Baitursynova, 13
References:
Abstract: This article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\alpha$ is shown. In each of the cases $\alpha <-1$, $\alpha >1$, $-1<\alpha<1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.
Keywords: differential equations with involution, inverse problem, eigenvalue, eigenfunction, Fourier method.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP13068539
This research was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP13068539).
Received: 17.05.2023
Accepted: 31.08.2023
Bibliographic databases:
Document Type: Article
UDC: 517.927.21, 517.927.25
MSC: 34L34, 35D35, 35Q70
Language: English
Citation: A. B. Imanbetova, A. A. Sarsenbi, B. N. Seilbekov, “Inverse problems for the beam vibration equation with involution”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023), 452–466
Citation in format AMSBIB
\Bibitem{ImaSarSei23}
\by A.~B.~Imanbetova, A.~A.~Sarsenbi, B.~N.~Seilbekov
\paper Inverse problems for the beam vibration equation with involution
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 3
\pages 452--466
\mathnet{http://mi.mathnet.ru/vuu861}
\crossref{https://doi.org/10.35634/vm230305}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001137965100001}
Linking options:
  • https://www.mathnet.ru/eng/vuu861
  • https://www.mathnet.ru/eng/vuu/v33/i3/p452
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :58
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024