Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, Volume 33, Issue 3, Pages 387–401
DOI: https://doi.org/10.35634/vm230301
(Mi vuu857)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral

V. N. Baranov, V. I. Rodionov, A. G. Rodionova

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (251 kB) Citations (1)
References:
Abstract: The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
Keywords: step function, regulated function, Jordan measurability, Riemann integrability.
Received: 21.02.2023
Accepted: 10.08.2023
Bibliographic databases:
Document Type: Article
UDC: 517.982.22, 517.518.12
MSC: 46B99, 26B15
Language: Russian
Citation: V. N. Baranov, V. I. Rodionov, A. G. Rodionova, “On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:3 (2023), 387–401
Citation in format AMSBIB
\Bibitem{BarRodRod23}
\by V.~N.~Baranov, V.~I.~Rodionov, A.~G.~Rodionova
\paper On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2023
\vol 33
\issue 3
\pages 387--401
\mathnet{http://mi.mathnet.ru/vuu857}
\crossref{https://doi.org/10.35634/vm230301}
Linking options:
  • https://www.mathnet.ru/eng/vuu857
  • https://www.mathnet.ru/eng/vuu/v33/i3/p387
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :33
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024