Loading [MathJax]/jax/output/CommonHTML/jax.js
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, Volume 29, Issue 4, Pages 459–482
DOI: https://doi.org/10.20537/vm190401
(Mi vuu695)
 

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

Nonlocal boundary value problems for a fractional-order convection-diffusion equation

M. Kh. Beshtokova, V. A. Vogahovab

a Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center of RAS, ul. Shortanova, 89 A, Nalchik, 360000, Russia
b Kabardino-Balkarian State University, ul. Chernyshevskogo, 173, Nalchik, 360000, Russia
Full-text PDF (338 kB) Citations (9)
References:
Abstract: In the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of O(h2+τ2).
Keywords: nonlocal boundary value problems, a priori estimate, nonstationary convection-diffusion equation, fractional order differential equation, fractional Caputo derivative.
Received: 31.03.2019
Bibliographic databases:
Document Type: Article
UDC: 519.63
MSC: 35K10
Language: Russian
Citation: M. Kh. Beshtokov, V. A. Vogahova, “Nonlocal boundary value problems for a fractional-order convection-diffusion equation”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 459–482
Citation in format AMSBIB
\Bibitem{BesVog19}
\by M.~Kh.~Beshtokov, V.~A.~Vogahova
\paper Nonlocal boundary value problems for a fractional-order convection-diffusion equation
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2019
\vol 29
\issue 4
\pages 459--482
\mathnet{http://mi.mathnet.ru/vuu695}
\crossref{https://doi.org/10.20537/vm190401}
Linking options:
  • https://www.mathnet.ru/eng/vuu695
  • https://www.mathnet.ru/eng/vuu/v29/i4/p459
  • This publication is cited in the following 9 articles:
    1. Z. V. Beshtokova, “Finite Difference Method for Solving Parabolic-Type Integro-Differential Equations in Multidimensional Domain with Nonhomogeneous First-Order Boundary Conditions”, CMIT, 8:1 (2024), 43  crossref
    2. M. Kh. Beshtokov, “Initial-Boundary Value Problems for the Moisture Transfer Equation with Different Order Fractional Derivatives and Nonlocal Linear Source”, Sib Math J, 65:6 (2024), 1407  crossref
    3. Z. V. Beshtokova, “Konechno-raznostnye metody resheniya nelokalnoi kraevoi zadachi dlya mnogomernogo parabolicheskogo uravneniya s granichnymi usloviyami integralnogo vida”, Dalnevost. matem. zhurn., 22:1 (2022), 3–27  mathnet  crossref  mathscinet
    4. Z. V. Beshtokova, M. Kh. Beshtokov, M. Kh. Shkhanukov-Lafishev, “Ob odnoi raznostnoi skheme resheniya zadachi Dirikhle dlya mnogomernogo uravneniya diffuzii s drobnoi proizvodnoi Kaputo v oblasti s proizvolnoi granitsei”, Vladikavk. matem. zhurn., 24:3 (2022), 37–54  mathnet  crossref  mathscinet
    5. M. Kh. Beshtokov, “Kraevye zadachi dlya uravneniya sobolevskogo tipa drobnogo poryadka c effektom pamyati”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:4 (2022), 607–629  mathnet  crossref
    6. M. Kh. Beshtokov, M. Z. Khudalov, “Raznostnye metody resheniya nelokalnykh kraevykh zadach dlya differentsialnykh uravnenii konvektsii-diffuzii drobnogo poryadka c effektom pamyati”, Dalnevost. matem. zhurn., 21:1 (2021), 3–25  mathnet  crossref
    7. M. Kh. Beshtokov, Z. V. Beshtokova, “Metod setok priblizhennogo resheniya nachalno-kraevykh zadach dlya obobschennykh uravnenii konvektsii-diffuzii”, Vladikavk. matem. zhurn., 23:3 (2021), 28–44  mathnet  crossref
    8. A. A. Alikhanov, M. KH. Beshtokov, M. H. Shhanukov-Lafishev, “Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation”, Comput. Math. Math. Phys., 61:7 (2021), 1075–1093  mathnet  mathnet  crossref  crossref  isi  scopus
    9. M. Kh. Beshtokov, Z. V. Beshtokova, M. Z. Khudalov, “Konechno-raznostnyi metod resheniya nelokalnoi kraevoi zadachi dlya nagruzhennogo uravneniya teploprovodnosti drobnogo poryadka”, Vladikavk. matem. zhurn., 22:4 (2020), 45–57  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :211
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025