Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 1, Pages 95–120
DOI: https://doi.org/10.20537/vm160109
(Mi vuu522)
 

This article is cited in 16 scientific papers (total in 16 papers)

MATHEMATICS

αα-sets in finite dimensional Euclidean spaces and their properties

V. N. Ushakov, A. A. Uspenskii

N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
References:
Abstract: The concept of αα-set in a finite-dimensional Euclidean space, which is one of generalizations of the notion of a convex set, is introduced. The emergence of this concept is connected with the study of properties of attainability sets of nonlinear controlled systems. The numerical characteristic of nonconvexity degree of a set on the basis of which a classification of sets is carried out is defined in the paper. Analogs of basic concepts from the convex analysis are introduced into consideration and their properties are studied. Statements in the spirit of such theorems from the convex analysis as the theorem of existence of basic hyperplane to a convex set and theorems of separability of convex sets in Euclidean space are formulated and proved. The concept of magoriums of nonconvex sets is studied. Property of a magoriums is a sufficient condition for representation of a closed nonconvex set in the form of crossing of half-spaces in the sense of definitions entered in this work. The obtained results of the theory of separability of nonconvex sets can be extended on a case of hypograph and epigraph of the scalar functions with Lipschitz condition.
Keywords: convex set, convex hull, αα-set, αα-hyperplane, αα-separability.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00486_а
Received: 21.12.2015
Bibliographic databases:
Document Type: Article
UDC: 514.74
MSC: 52A30
Language: Russian
Citation: V. N. Ushakov, A. A. Uspenskii, “αα-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016), 95–120
Citation in format AMSBIB
\Bibitem{UshUsp16}
\by V.~N.~Ushakov, A.~A.~Uspenskii
\paper $\alpha$-sets in finite dimensional Euclidean spaces and their properties
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 1
\pages 95--120
\mathnet{http://mi.mathnet.ru/vuu522}
\crossref{https://doi.org/10.20537/vm160109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485577}
\elib{https://elibrary.ru/item.asp?id=25681789}
Linking options:
  • https://www.mathnet.ru/eng/vuu522
  • https://www.mathnet.ru/eng/vuu/v26/i1/p95
  • This publication is cited in the following 16 articles:
    1. P. D. Lebedev, A. A. Uspenskii, “Metod Nyutona pri postroenii singulyarnogo mnozhestva minimaksnogo resheniya v odnom klasse kraevykh zadach dlya uravnenii Gamiltona — Yakobi”, Chelyab. fiz.-matem. zhurn., 9:1 (2024), 63–76  mathnet  crossref
    2. A. A. Uspenskii, P. D. Lebedev, “Alfa-mnozhestva i ikh obolochki:analiticheskie vzaimosvyazi v ploskom sluchae”, Vestnik rossiiskikh universitetov. Matematika, 29:146 (2024), 204–217  mathnet  crossref
    3. P. D. Lebedev, A. A. Uspenskii, “Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case”, Sb. Math., 215:9 (2024), 1224–1248  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    4. O. A. Kuvshinov, “O geometrii ovala Kassini, ego mere nevypuklosti i εε-sloe”, Izv. IMI UdGU, 60 (2022), 34–57  mathnet  crossref  mathscinet
    5. A. A. Uspenskii, P. D. Lebedev, “On singularity structure of minimax solution to Dirichlet problem for eikonal type equation with discontinuous curvature of boundary of boundary set”, Ufa Math. J., 13:3 (2021), 126–151  mathnet  crossref  isi
    6. V. N. Ushakov, A. A. Ershov, A. R. Matviychuk, “On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems”, Proc. Steklov Inst. Math., 315 (2021), 247–256  mathnet  crossref  crossref  isi
    7. A. A. Ershov, O. A. Kuvshinov, “O svoistvakh peresecheniya αα-mnozhestv”, Izv. IMI UdGU, 55 (2020), 79–92  mathnet  crossref
    8. P. D. Lebedev, A. A. Uspenskii, “Elementy analiticheskogo konstruktora reshenii v klasse zadach upravleniya po bystrodeistviyu s tselevym mnozhestvom s razryvnoi kriviznoi granitsy”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 370–386  mathnet  crossref
    9. A. A. Uspenskii, P. D. Lebedev, “Svoistva nestatsionarnykh psevdovershin kraevogo mnozhestva pri razryve gladkosti krivizny ego granitsy v zadache Dirikhle dlya uravneniya tipa eikonala”, Sib. elektron. matem. izv., 17 (2020), 2028–2044  mathnet  crossref
    10. Vladimir Ushakov, Aleksandr Ershov, Maksim Pershakov, Communications in Computer and Information Science, 1090, Mathematical Optimization Theory and Operations Research, 2019, 329  crossref
    11. V. N. Ushakov, A. A. Ershov, “An estimate of the Hausdorff distance between a set and its convex hull in Euclidean spaces of small dimension”, Proc. Steklov Inst. Math. (Suppl.), 305, suppl. 1 (2019), S178–S190  mathnet  crossref  crossref  isi  elib
    12. A. A. Uspenskii, P. D. Lebedev, “Vyyavlenie singulyarnosti u obobschennogo resheniya zadachi Dirikhle dlya uravneniya tipa eikonala v usloviyakh minimalnoi gladkosti granitsy kraevogo mnozhestva”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:1 (2018), 59–73  mathnet  crossref  elib
    13. V. N. Ushakov, A. A. Uspenskii, A. A. Ershov, “Alfa-mnozhestva v konechnomernykh evklidovykh prostranstvakh i ikh prilozheniya v teorii upravleniya”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 14:3 (2018), 261–272  mathnet  crossref  elib
    14. P.D. Lebedev, A.A. Uspenskii, “Construction of Singular Sets in a Velocity Control Problem with Nonconvex Target”, IFAC-PapersOnLine, 51:32 (2018), 681  crossref
    15. A. V. Seliverstov, “O kasatelnykh pryamykh k affinnym giperpoverkhnostyam”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:2 (2017), 248–256  mathnet  crossref  elib
    16. Vladimir N. Ushakov, Aleksandr A. Uspenskii, Aleksandr A. Ershov, 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA), 2017, 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:573
    Full-text PDF :234
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025