Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2023, Number 83, Pages 5–16
DOI: https://doi.org/10.17223/19988621/83/1
(Mi vtgu998)
 

MATHEMATICS

On cuts of the quotient field of a ring of formal power series

N. Yu. Galanova

Tomsk State University, Tomsk, Russian Federation
References:
Abstract: In studies related to the classification of real-closed fields, fields of formal power series with a multiplicative divisible group of Archimedean classes are essentially used. Consider a linearly ordered Abelian divisible group $G = G(L,\mathbf{Q})$, which consists of words with generators from a linearly ordered set $L$ similar to the ordinal $\omega_1$ and rational exponents. The article deals with the properties of sections of subfields of the field of bounded formal power series $\mathbf{R}[[G,\aleph_1]]$. For all $\xi_i\in L$ we set $t_i=\xi_i^{-1}$. Consider an infinite strictly decreasing sequence $\{t_\gamma\}_{\gamma\in\Gamma}$, where $\Gamma\subseteq\omega_1\setminus\{1\}$ is an arbitrary infinite set. Series of the form $x = \sum\limits_{\gamma\in\Gamma} r_\gamma\cdot t_\gamma\in \mathbf{R}[[G]]$, where $r_\gamma\ne0$ for all $\gamma\in\Gamma$, i.e. $\mathrm{supp}(x) = \{t_\gamma \mid \gamma\in\Gamma\}$, we will call series of the form ($*$). We prove that series of the form ($*$) for $r_\gamma$ for all $\gamma\in\Gamma$ generate in the field $qf\mathbf{R}[[G,\aleph_0]] = K$ symmetric non-fundamental sections of confinality $(\aleph_0,\aleph_0)$, in the real closure $\overline{qf\mathbf{R}[[G,\aleph_0]]}= \overline{K}$ series ($*$) generate symmetric sections. Let $H$ be the least by inclusion real closed subfield of the field $\mathbf{R}[[G,\aleph_1]]$ containing $\overline{K}$ and all truncations of the series $x_{\omega_1}=\sum\limits_{\gamma\in\omega_1}1\cdot t_\gamma$. Then $\overline{K}\ne H$ and the elements of the real closure of the simple transcendental extension $\overline{H(x_{\omega_1})}$ that do not belong to $H$ generate symmetric sections of the type $(\aleph_1,\aleph_1)$ in the field $H$.
Keywords: divisible totally ordered Abelian group, real closed field, field of bounded formal (generalized) power series, symmetric cut (non-ball cut), cofinality of a cut, fundamental cut (Scott cut), quotient field.
Received: 30.08.2021
Accepted: June 1, 2023
Document Type: Article
UDC: 512.623.23
MSC: Primary 13J05; Secondary 12J15
Language: Russian
Citation: N. Yu. Galanova, “On cuts of the quotient field of a ring of formal power series”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83, 5–16
Citation in format AMSBIB
\Bibitem{Gal23}
\by N.~Yu.~Galanova
\paper On cuts of the quotient field of a ring of formal power series
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2023
\issue 83
\pages 5--16
\mathnet{http://mi.mathnet.ru/vtgu998}
\crossref{https://doi.org/10.17223/19988621/83/1}
Linking options:
  • https://www.mathnet.ru/eng/vtgu998
  • https://www.mathnet.ru/eng/vtgu/y2023/i83/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:37
    Full-text PDF :17
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024