Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2016, Number 3(41), Pages 42–50
DOI: https://doi.org/10.17223/19988621/41/4
(Mi vtgu526)
 

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

Fully inert subgroups of completely decomposable finite rank groups and their commensurability

A. R. Chekhlov

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (479 kB) Citations (7)
References:
Abstract: A subgroup HH of an Abelian group G is said to be fully inert in G if the subgroup HφH has a finite index in φH for any endomorphism φ of the group G. Subgroups H and K of the group G are said to be commensurable if the subgroup KH has a finite index in H and in K. Some properties of fully inert and commensurable groups in the context of direct decompositions of the group and operations on subgroups are proved. For example, if a subgroup H is commensurable with a subgroup K, then H is commensurable with HK and with H+K; if a subgroup H is commensurable with a subgroup K, then the subgroup fH is commensurable with fK for any homomorphism f. The main result of the paper is that every fully inert subgroup of a completely decomposable finite rank torsion-free group G is commensurable with a fully invariant subgroup if and only if types of rank 1 direct summands of the group G are either equal or incomparable, and all rank 1 direct summands of the group G are not divisible by any prime number p.
Keywords: factor group, fully invariant subgroup, commensurable subgroups, divisible hull, rank of the group.
Received: 21.03.2016
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: A. R. Chekhlov, “Fully inert subgroups of completely decomposable finite rank groups and their commensurability”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41), 42–50
Citation in format AMSBIB
\Bibitem{Che16}
\by A.~R.~Chekhlov
\paper Fully inert subgroups of completely decomposable finite rank groups and their commensurability
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2016
\issue 3(41)
\pages 42--50
\mathnet{http://mi.mathnet.ru/vtgu526}
\crossref{https://doi.org/10.17223/19988621/41/4}
\elib{https://elibrary.ru/item.asp?id=26224725}
Linking options:
  • https://www.mathnet.ru/eng/vtgu526
  • https://www.mathnet.ru/eng/vtgu/y2016/i3/p42
  • This publication is cited in the following 7 articles:
    1. A. R. Chekhlov, P. V. Danchev, B. Goldsmith, “On the socles of characteristically inert subgroups of abelian p-groups”, Forum Math., 33:4 (2021), 889–898  crossref  mathscinet  isi  scopus
    2. A. R. Chekhlov, P. V. Danchev, B. Goldsmith, “On the socles of fully inert subgroups of abelian p-groups”, Mediterr. J. Math., 18:3 (2021), 122  crossref  mathscinet  isi  scopus
    3. A. R. Chekhlov, O. V. Ivanets, “O proektivno inertnykh podgruppakh vpolne razlozhimykh grupp konechnogo ranga”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2020, no. 67, 63–68  mathnet  crossref
    4. U. Dardano, D. Dikranjan, S. Rinauro, “Inertial properties in groups”, Int. J. Group Theory, 7:3, 3 (2018), 17–62  crossref  mathscinet  isi
    5. A. R. Chekhlov, “On Fully Inert Subgroups of Completely Decomposable Groups”, Math. Notes, 101:2 (2017), 365–373  mathnet  crossref  crossref  mathscinet  isi  elib
    6. A. R. Chekhlov, “On Strongly Invariant Subgroups of Abelian Groups”, Math. Notes, 102:1 (2017), 106–110  mathnet  crossref  crossref  mathscinet  isi  elib
    7. A. R. Chekhlov, “Intermediately fully invariant subgroups of abelian groups”, Siberian Math. J., 58:5 (2017), 907–914  mathnet  crossref  crossref  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :82
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025