|
MATHEMATICS
On the generalization of some classes of close-to-convex
and typically real functions
F. F. Maiyer, M. G. Tastanov, A. A. Utemissova, A. T. Baimankulov Kostanay Regional University named after A. Baitursynov, Kostanay, Kazakhstan
Abstract:
he paper introduces the class $C(\lambda,\alpha,\gamma)=\left\{f(z) :\left| (1-\lambda z^2)f'(z)^{1/\gamma}-a\right|\leqslant a\right\}$,
$0\leqslant\lambda\leqslant 1$, $0\leqslant\gamma\leqslant 1$, $a>1/2$, almost convex order for functions, generalizing classes of functions with limited rotation $(a\to+\infty, \lambda=0)$ and functions convex of order $\gamma$ in the direction of the imaginary axis $(a\to+\infty, \lambda=1)$.
For the class $C(\lambda, a, \gamma)$ and its subclasses, unimprovable distortion theorems and exact convexity radii are found, and similar results are obtained in a class generalizing the class of typically real functions.
Keywords:
geometric theory of functions, single-leaf functions, estimates of analytic functions, typically real functions, radii of convexity.
Received: 27.02.2023 Accepted: October 10, 2023
Citation:
F. F. Maiyer, M. G. Tastanov, A. A. Utemissova, A. T. Baimankulov, “On the generalization of some classes of close-to-convex
and typically real functions”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 85, 5–21
Linking options:
https://www.mathnet.ru/eng/vtgu1025 https://www.mathnet.ru/eng/vtgu/y2023/i85/p5
|
Statistics & downloads: |
Abstract page: | 65 | Full-text PDF : | 28 | References: | 23 |
|