Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2024, Volume 29, Issue 145, Pages 65–76
DOI: https://doi.org/10.20310/2686-9667-2024-29-145-65-76
(Mi vtamu314)
 

Scientific articles

The best approximation of analytic in a unit circle functionsin the Bergman weight space $\mathscr{B}_{2,\mu}$

M. R. Langarshoev

Civil Defence Academy of EMERCOM of Russia
References:
Abstract: The paper studies the issues of the best approximation of analytical functions in the Bergman weight space $\mathscr{B}_{2,\mu}.$ In this space, for best approximations of functions analytic in the circle by algebraic complex polynomials we obtain the exact inequalities by means of generalized modules of continuity of higher order derivatives $\Omega_{m}(z^{r}f^{(r)},t),$ $m\in\mathbb{N},$ $r\in\mathbb{Z}.$ For classes of functions analytic in the unit circle defined by the characteristic $\Omega_{m}(z^{r}f^{(r)},t),$ and the majorant $\Phi,$ the exact values of some $n$-widths are calculated. When proving the main results of this work, we use methods for solving extremal problems in normalized spaces of functions analytic in the circle, N. P. Korneichuk’s method for estimating upper bounds for the best approximations of classes of functions by a subspace of fixed dimension, and a method for estimating from below the $n$-widths of function classes in various Banach spaces.
Keywords: best polynomial approximation, generalized modulus of continuity of high order, Bergman weight space, diameters
Received: 06.11.2023
Accepted: 11.03.2024
Document Type: Article
UDC: 517.53
MSC: 30E05, 30E10, 42A10
Language: Russian
Citation: M. R. Langarshoev, “The best approximation of analytic in a unit circle functionsin the Bergman weight space $\mathscr{B}_{2,\mu}$”, Russian Universities Reports. Mathematics, 29:145 (2024), 65–76
Citation in format AMSBIB
\Bibitem{Lan24}
\by M.~R.~Langarshoev
\paper The best approximation of analytic in a unit circle
functions\\ in the Bergman weight space $\mathscr{B}_{2,\mu}$
\jour Russian Universities Reports. Mathematics
\yr 2024
\vol 29
\issue 145
\pages 65--76
\mathnet{http://mi.mathnet.ru/vtamu314}
\crossref{https://doi.org/10.20310/2686-9667-2024-29-145-65-76}
Linking options:
  • https://www.mathnet.ru/eng/vtamu314
  • https://www.mathnet.ru/eng/vtamu/v29/i145/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :35
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024