Russian Universities Reports. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Russian Universities Reports. Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Universities Reports. Mathematics, 2020, Volume 25, Issue 130, Pages 123–130
DOI: https://doi.org/10.20310/2686-9667-2020-25-130-123-130
(Mi vtamu175)
 

Scientific articles

On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation

M. J. Alvesa, S. M. Labovskib

a Eduardo Mondlane University
b Plekhanov Russian University of Economics
References:
Abstract: For a functional-differential operator
\begin{equation*} \mathcal{L} u = (1/\rho)\left(-(pu')'+\int_0^l u(s)d_s r(x,s)\right) \end{equation*}
with symmetry, the completeness and orthogonality of the eigenfunctions is shown. The positivity conditions of the Green function of the periodic boundary value problem are obtained.
Keywords: positive solutions, spectral properties.
Received: 01.04.2020
Document Type: Article
UDC: 517.9
Language: Russian
Citation: M. J. Alves, S. M. Labovski, “On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation”, Russian Universities Reports. Mathematics, 25:130 (2020), 123–130
Citation in format AMSBIB
\Bibitem{AlvLab20}
\by M.~J.~Alves, S.~M.~Labovski
\paper On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation
\jour Russian Universities Reports. Mathematics
\yr 2020
\vol 25
\issue 130
\pages 123--130
\mathnet{http://mi.mathnet.ru/vtamu175}
\crossref{https://doi.org/10.20310/2686-9667-2020-25-130-123-130}
Linking options:
  • https://www.mathnet.ru/eng/vtamu175
  • https://www.mathnet.ru/eng/vtamu/v25/i130/p123
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Universities Reports. Mathematics
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :35
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024