Abstract:
We consider the stability of stationary solutions of the Hoff equation on a graph, which is a model design of I-beams. The basic approach second Lyapunov method, modified according to our situation. In the end explains the technical meaning of the parameter λ0.
Citation:
G. A. Sviridyuk, S. A. Zagrebina, P. O. Pivovarova, “Hoff Equation Stability on a Graph”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(20) (2010), 6–15
\Bibitem{SviZagPiv10}
\by G.~A.~Sviridyuk, S.~A.~Zagrebina, P.~O.~Pivovarova
\paper Hoff Equation Stability on a Graph
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2010
\vol 1(20)
\pages 6--15
\mathnet{http://mi.mathnet.ru/vsgtu735}
\crossref{https://doi.org/10.14498/vsgtu735}
Linking options:
https://www.mathnet.ru/eng/vsgtu735
https://www.mathnet.ru/eng/vsgtu/v120/p6
This publication is cited in the following 13 articles:
A. A Zamyshlyaeva, E. V Bychkov, “INITIAL BOUNDARY VALUE PROBLEM FOR THE NONLINEAR MODIFIED BOUSSINESQ EQUATION”, Differencialʹnye uravneniâ, 60:8 (2024), 1076
M. A. Sagadeeva, A. V. Generalov, “Numerical solution for non-stationary linearized Hoff equation defined on geometrical graph”, J. Comp. Eng. Math., 5:3 (2018), 61–74
A. M. Akhtyamov, Kh. R. Mamedov, E. N. Yilmazoglu, “Boundary inverse problem for star-shaped graph with different densities strings-edges”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 11:3 (2018), 5–17
P. O. Moskvicheva, “Chislennyi eksperiment dlya obobschennogo uravneniya Khoffa v oblasti”, Vyrozhdennye polugruppy i propagatory uravnenii sobolevskogo tipa, Materialy dokladov Mezhdunarodnogo simpoziuma, Chelyabinsk, 2014, 59–64
S. I. Kadchenko, S. N. Kakushkin, “Vychislenie znachenii sobstvennykh funktsii diskretnykh poluogranichennykh snizu operatorov metodom regulyarizovannykh sledov”, Vestn. SamGU. Estestvennonauchn. ser., 2012, no. 6(97), 13–21
S. I. Kadchenko, S. N. Kakushkin, “Chislennye metody nakhozhdeniya sobstvennykh chisel i sobstvennykh funktsii vozmuschennykh samosopryazhennykh operatorov”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 13, 45–57
S. I. Kadchenko, S. N. Kakushkin, “Algoritm nakhozhdeniya znachenii sobstvennykh funktsii vozmuschennykh samosopryazhennykh operatorov metodom regulyarizovannykh sledov”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 83–88
S. A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya lineinoi modeli Khoffa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 4–12
S. I. Kadchenko, S. N. Kakushkin, “Nakhozhdenie znachenii pervykh sobstvennykh funktsii vozmuschennykh diskretnykh operatorov s prostym spektrom”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 25–32
S. I. Kadchenko, S. N. Kakushkin, “Chislennyi metod nakhozhdeniya sobstvennykh chisel i algoritm vychisleniya znachenii sobstvennykh funktsii vozmuschennykh diskretnykh operatorov”, Vestnik Magnitogorskogo gosudarstvennogo universiteta, 2012, no. 12, 96–115
P. O. Pivovarova, “Neustoichivost reshenii uravnenii Khoffa na grafe. Chislennyi eksperiment”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 7, 71–74
A. V. Keller, “K 20-letiyu seminara po uravneniyam sobolevskogo tipa”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 9, 119–121