Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2025, Volume 29, Number 2, Pages 220–240
DOI: https://doi.org/10.14498/vsgtu2142
(Mi vsgtu2142)
 

Differential Equations and Mathematical Physics

Higher-order difference schemes for the loaded heat conduction equations with boundary conditions of the first kind

M. Kh. Beshtokov

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS, Nal'chik, 360000, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: This paper investigates initial-boundary value problems for loaded heat equations with boundary conditions of the first kind. High-accuracy difference schemes are constructed for numerical solution of these problems. A priori estimates in discrete form are obtained through energy inequalities. The derived estimates establish solution uniqueness and stability with respect to both initial data and right-hand side terms, while proving convergence of the discrete solution to the original differential problem at $O(h^4+\tau^2)$ rate (under sufficient smoothness assumptions). Numerical experiments with test cases validate all theoretical findings.
Keywords: parabolic equation, first initial-boundary value problem, loaded equation, integral equation, a priori estimate, difference scheme, stability and convergence
Received: January 6, 2025
Revised: April 12, 2025
Accepted: April 28, 2025
First online: June 24, 2025
Bibliographic databases:
Document Type: Article
UDC: 519.642.2
MSC: 65M06, 65N12, 35R09
Language: Russian
Citation: M. Kh. Beshtokov, “Higher-order difference schemes for the loaded heat conduction equations with boundary conditions of the first kind”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:2 (2025), 220–240
Citation in format AMSBIB
\Bibitem{Bes25}
\by M.~Kh.~Beshtokov
\paper Higher-order difference schemes for the loaded heat conduction equations with boundary conditions of the first kind
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2025
\vol 29
\issue 2
\pages 220--240
\mathnet{http://mi.mathnet.ru/vsgtu2142}
\crossref{https://doi.org/10.14498/vsgtu2142}
\edn{https://elibrary.ru/EORDFG}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu2142
  • https://www.mathnet.ru/eng/vsgtu/v229/i2/p220
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :74
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026