Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2022, Volume 26, Number 2, Pages 222–258
DOI: https://doi.org/10.14498/vsgtu1881
(Mi vsgtu1881)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differential Equations and Mathematical Physics

Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane

M. Aouaoudaa, A. Ayadia, H. Fujita Yashimab

a Université Larbi Ben M’hidi, Oum El Bouaghi, 04000, Algeria
b École Normale Supérieure Assia Djebar, Constantine, 25000, Algeria (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: In this paper, by using the heat kernel and the transport operator on each step of time discretization, approximate solutions for the transport-diffusion equation on the half-plane $ \mathbb{R}^2_+ $ are constructed, and their convergence to a function which satisfies the transport-diffusion equation and the initial and boundary conditions is proved. These approximate solutions can be considered as a deterministic version of (the approximation of) the stochastic representation of the solution to parabolic equation, realized by the relationship between the heat kernel and the Brownian motion. But as they are defined only by an integral operator and transport, their properties and their convergence are proved without using probabilistic notions. The result of this paper generalizes that of recent papers about the convergence of analogous approximate solutions on the whole space $ \mathbb{R}^n $. In case of the half-plane, it is necessary to elaborate (not trivial) estimates of the smoothness of the approximate solutions influenced by boundary condition.
Keywords: transport-diffusion equation, approximate solution, heat kernel.
Received: August 26, 2021
Revised: May 5, 2022
Accepted: May 23, 2022
First online: June 1, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
MSC: 35K20, 35K58, 35K08
Language: Russian
Citation: M. Aouaouda, A. Ayadi, H. Fujita Yashima, “Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022), 222–258
Citation in format AMSBIB
\Bibitem{AouAyaFuj22}
\by M.~Aouaouda, A.~Ayadi, H.~Fujita Yashima
\paper Convergence of approximate solutions by heat kernel for transport-diffusion equation in a half-plane
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2022
\vol 26
\issue 2
\pages 222--258
\mathnet{http://mi.mathnet.ru/vsgtu1881}
\crossref{https://doi.org/10.14498/vsgtu1881}
\edn{https://elibrary.ru/JNGCBE}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1881
  • https://www.mathnet.ru/eng/vsgtu/v226/i2/p222
  • This publication is cited in the following 3 articles:
    1. Lynda Taleb, Rabah Gherdaoui, “Approximation by the heat kernel of the solution to the transport-diffusion equation with the time-dependent diffusion coefficient”, MATH, 10:2 (2025), 2392  crossref
    2. R. Gerdaui, S. Selvadurai, Kh. Fuzhita Yashima, “Skhodimost priblizhennykh reshenii dlya uravneniya perenosa-diffuzii v poluprostranstve s usloviem Neimana”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 48 (2024), 64–79  mathnet  crossref
    3. A. Nemdili, F. Korishi, Kh. Fuzhita Yashima, “Priblizhenie resheniya uravneniya perenosa-diffuzii v prostranstve Geldera”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 28:3 (2024), 426–444  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :127
    References:48
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025