Loading [MathJax]/jax/output/SVG/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, Volume 25, Number 1, Pages 7–20
DOI: https://doi.org/10.14498/vsgtu1777
(Mi vsgtu1777)
 

Differential Equations and Mathematical Physics

On a problem for the parabolic-hyperbolic type equation of fractional order with non-linear loaded term

O. Kh. Abdullayev

V. I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Science, Tashkent, 100174, Uzbekistan (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: We study the existence and uniqueness of solution of the non-local problem for the parabolic-hyperbolic type equation with non linear loaded term involving Caputo derivative
$$ f(x) = \begin{cases} {u_{xx}}-_CD_{0y}^\alpha u+a_1(x)u^{p_1}(x,0), & y > 0, \\ {u_{xx}}-{u_{yy}}+a_2(x)u^{p_2}(x,0), & y<0, \\ \end{cases} $$
where
$$ {}_CD_{0y}^{\alpha }f(y) = \frac{1}{{\Gamma (1-\alpha )}} \int_0^y {(y - t)}^{-\alpha}f'(t)\,dt, \quad 0 < \alpha < 1, $$
$a_i(x)$ are given functions, $p_i$, $\alpha=\mathrm{const}$, besides $ p_i>0$ $(i=1,2)$, $0 < \alpha < 1$ in the domain $\Omega$ bounded with segments:
$$ A_1 A_2 = \{ (x,y): x = 1, 0 < y < h\}, \quad B_1 B_2 = \{ (x,y): x = 0, 0 < y < h\},$$

$$B_2 A_2 = \{ (x,y): y = h, 0 < x < 1\} $$
at the $y > 0$, and characteristics:
$$ A_1C: x - y = 1,\quad B_1C: x + y = 0$$
of the considered equation at $y < 0$, where $A_1 (1, 0)$, $A_2 (1, h)$, $B_1( 0, 0)$, $B_2( 0, h)$, and $C(1/2, -1/2)$.
Uniqueness of solution of the investigated problem was proved by an integral of energy. The existence of solution of the problem was proved by the method of integral equations. The theory of the second kind Fredholm type integral equations and the successive approximations method were widely used. We notice, that boundary value problems for the mixed type equations of fractional order with non linear loaded term have not been investigated.
Keywords: loaded equation, parabolic-hyperbolic type, Caputo fractional derivative, nonlinear integral equation, integral gluing condition, existence and uniqueness of solution.
Received: March 31, 2020
Revised: February 13, 2021
Accepted: March 10, 2021
First online: March 31, 2021
Bibliographic databases:
Document Type: Article
UDC: 517.956.6
MSC: 34K37, 35R11, 35M10
Language: Russian
Citation: O. Kh. Abdullayev, “On a problem for the parabolic-hyperbolic type equation of fractional order with non-linear loaded term”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:1 (2021), 7–20
Citation in format AMSBIB
\Bibitem{Abd21}
\by O.~Kh.~Abdullayev
\paper On a problem for the parabolic-hyperbolic type equation of~fractional order with non-linear loaded term
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2021
\vol 25
\issue 1
\pages 7--20
\mathnet{http://mi.mathnet.ru/vsgtu1777}
\crossref{https://doi.org/10.14498/vsgtu1777}
\zmath{https://zbmath.org/?q=an:7339530}
\elib{https://elibrary.ru/item.asp?id=45604167}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1777
  • https://www.mathnet.ru/eng/vsgtu/v225/i1/p7
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :245
    References:49
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025