Loading [MathJax]/jax/output/CommonHTML/config.js
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Editorial staff
Guidelines for authors
License agreement
Editorial policy

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2017, Volume 21, Number 2, Pages 326–361
DOI: https://doi.org/10.14498/vsgtu1533
(Mi vsgtu1533)
 

This article is cited in 16 scientific papers (total in 16 papers)

Mechanics of Solids

Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings

A. V. Khokhlov

Lomonosov Moscow State University, Institute of Mechanics, Moscow, 119192, Russian Federation (published under the terms of the Creative Commons Attribution 4.0 International License)
References:
Abstract: Basic qualitative properties of the creep curves generated by the linear integral constitutive relation of viscoelasticity (with an arbitrary creep compliance) under cyclic piecewise-constant uni-axial loadings (with an arbitrary asymmetry stress ratio) are studied analytically. General formulas and a number of exact two-sided bounds are obtained for maximal, minimal and ratcheting strain values during each cycle, for their sequences limits, for the rate of plastic (non-recoverable) strain accumulation and for cyclic creep curve deviation from the creep curve at constant stress which is equal to the cycle mean stress. Their dependence on loading cycle parameters and creep compliance properties are analyzed. Monotonicity and convexity intervals of cyclic creep curves, sequences of maximal and minimal strain values and ratcheting strain sequence, their evolution with cycle number growth and conditions for their boundedness, monotonicity and convergence are examined. The linear viscoelasticity theory abilities for simulation of ratcheting, creep acceleration, cyclic hardening or softening and cyclic stability under symmetric cyclic loadings are considered. The analysis carried out revealed the importance of convexity restriction imposed on a creep compliance and the governing role of its derivative limit value at infinity. It is proved that the limit value equality to zero is the criterion for non-accumulation of plastic strain, for memory fading and for asymptotic symmetrization of cyclic creep curve deviation from the creep curve at the mean stress. The qualitative features of theoretic cyclic creep curves are compared to basic properties of typical test creep curves of viscoelastoplastic materials under cyclic multi-step uni-axial loadings in order to elucidate the linear theory applicability scope, to reveal its abilities to provide an adequate description of basic rheological phenomena related to cyclic creep and to develop techniques of identification and tuning of the linear constitutive relation. In particular, it is proved that the linear constitutive relation with an arbitrary (increasing convex-up) creep compliance function provides the absence of ratcheting and cyclic softening under symmetric cyclic multi-step loadings and the absence of creep acceleration whenever a symmetric cyclic loading is added to a constant load.
Keywords: linear viscoelasticity, cyclic creep, creep curves at piecewise-constant loading, asymmetry stress ratio, mean stress, creep acceleration, plastic strain, ratcheting, cyclic stability.
Funding agency Grant number
Russian Foundation for Basic Research 17-08-01146_а
This work was supported by the Russian Foundation for Basic Research (project no. 17–08–01146_a).
Received: March 14, 2017
Revised: May 17, 2017
Accepted: June 12, 2017
First online: July 10, 2017
Bibliographic databases:
Document Type: Article
UDC: 539.372
MSC: 74D05
Language: Russian
Citation: A. V. Khokhlov, “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017), 326–361
Citation in format AMSBIB
\Bibitem{Kho17}
\by A.~V.~Khokhlov
\paper Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings
\jour Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.]
\yr 2017
\vol 21
\issue 2
\pages 326--361
\mathnet{http://mi.mathnet.ru/vsgtu1533}
\crossref{https://doi.org/10.14498/vsgtu1533}
\zmath{https://zbmath.org/?q=an:06964677}
\elib{https://elibrary.ru/item.asp?id=30039932}
Linking options:
  • https://www.mathnet.ru/eng/vsgtu1533
  • https://www.mathnet.ru/eng/vsgtu/v221/i2/p326
  • This publication is cited in the following 16 articles:
    1. A. V. Khokhlov, V. V. Gulin, “Influence of Structural Evolution and Load Level on the Properties of Creep and Recovery Curves Generated by a Nonlinear Model for Thixotropic Viscoelastoplastic Media”, Phys Mesomech, 28:1 (2025), 66  crossref
    2. A. V. Khokhlov, “Hybridization of a Linear Viscoelastic Constitutive Equation and a Nonlinear Maxwell-Type Viscoelastoplastic Model, and Analysis of Poisson's Ratio Evolution Scenarios under Creep”, Phys Mesomech, 27:3 (2024), 229  crossref
    3. A. S. Stolyarchuk, M. D. Romanenko, “Phenomenological Approach to Assessing the Low-Cycle Damageability of Metal Materials under Stationary and Nonstationary Loading”, Steel Transl., 54:3 (2024), 177  crossref
    4. A.V. KHOKHLOV, V.V. GULIN, “INFLUENCE OF STRUCTURE EVOLUTION AND LOAD LEVEL ON THE PROPERTIES OF CREEP AND RECOVERY CURVES PRODUCED BY A NONLINEAR MODEL FOR THIXOTROPIC VISCOELASTOPLASTIC MEDIA”, FM, 27:5 (2024)  crossref
    5. A. V. Khokhlov, “Generalization of a Nonlinear Maxwell-Type Viscoelastoplastic Model and Simulation of Creep and Recovery Curves”, Mech Compos Mater, 59:3 (2023), 441  crossref
    6. A. V. Khokhlov, “On the capability of linear viscoelasticity theory to describe the effect of extending region of material linearity as the hydrostatic pressure grows”, Moscow University Mechanics Bulletin, 76:1 (2021), 7–14  mathnet  crossref  zmath  isi
    7. A. V. Khokhlov, “Obschie svoistva pokazatelya skorostnoi chuvstvitelnosti diagramm deformirovaniya, porozhdaemykh lineinoi teoriei vyazkouprugosti i suschestvovanie maksimuma u ego zavisimosti ot skorosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 24:3 (2020), 469–505  mathnet  crossref  elib
    8. A. V. Khokhlov, “Reshenie zadachi o napryazhenno-deformirovannom sostoyanii pologo tsilindra iz nelineino nasledstvennogo materiala pod deistviem vnutrennego i vneshnego davlenii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 12:1 (2020), 44–54  mathnet  crossref
    9. A. V. Khokhlov, “Analiz vozmozhnostei opisaniya vliyaniya gidrostaticheskogo davleniya na krivye polzuchesti i koeffitsient poperechnoi deformatsii reonomnykh materialov v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:2 (2019), 304–340  mathnet  crossref  elib
    10. A. V. Khokhlov, “Analiz vliyaniya ob'emnoi polzuchesti na krivye nagruzheniya s postoyannoi skorostyu i evolyutsiyu koeffitsienta poperechnoi deformatsii v ramkakh lineinoi teorii vyazkouprugosti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 23:4 (2019), 671–704  mathnet  crossref  elib
    11. A. V. Khokhlov, “Monotonnoe vozrastanie pokazatelya skorostnoi chuvstvitelnosti lyubykh parallelnykh soedinenii lineinykh modelei vyazkouprugosti so stepennymi funktsiyami relaksatsii”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 11:3 (2019), 56–67  mathnet  crossref  elib
    12. A. V. Khokhlov, “Properties of the set of strain diagrams produced by rabotnov nonlinear equation for rheonomous materials”, Mech. Sol., 54:3 (2019), 384–399  crossref  isi  scopus
    13. A. V. Khokhlov, “Osobennosti povedeniya poperechnoi deformatsii i koeffitsienta Puassona izotropnykh reonomnykh materialov pri polzuchesti, opisyvaemye lineinoi teoriei vyazkouprugosti”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018), 65–77  mathnet  crossref  elib
    14. A. V. Khokhlov, “Indikatory primenimosti i metodiki identifikatsii nelineinoi modeli tipa maksvella dlya reonomnykh materialov po krivym polzuchesti pri stupenchatykh nagruzheniyakh”, Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya: Estestvennye nauki, 2018, no. 6 (81), 92–112  crossref  elib
    15. A. V. Khokhlov, “Sravnitelnyi analiz svoistv krivykh polzuchesti, porozhdaemykh lineinoi i nelineinoi teoriyami nasledstvennosti pri stupenchatykh nagruzheniyakh”, Matematicheskaya fizika i kompyuternoe modelirovanie, 21:2 (2018), 27–51  mathnet  crossref
    16. A. V. Khokhlov, “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mech. Sol., 53:3 (2018), 307–328  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Самарского государственного технического университета. Серия: Физико-математические науки
    Statistics & downloads:
    Abstract page:547
    Full-text PDF :246
    References:74
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025