Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2025, Volume 27, Number 2, Pages 93–111
DOI: https://doi.org/10.46698/q4030-9541-4914-r
(Mi vmj958)
 

Approximation properties of Valle-Poussin averages for discrete Fourier sums bypolynomials orthogonal on arbitrary nets

A. A. Nurmagomedova, M. M. Shikhshinatovab

a Dagestan State Agrarian University, 180 M. Gadzhiev St., Makhachkala 367032, Russia
b Moscow State University of Civil Engineering, 26 Yaroslavskoye shosse, Moscow 129337, Russia
References:
Abstract: Let $T=\{t_0, t_1, \ldots, t_N\}$ and $T_N=\{x_0, x_1, \ldots, x_{N-1}\},$ where $x_j=(t_j+t_{j+1})/2$, $j=0, 1, \ldots, N-1,$ are any system of different points from $[-1, 1].$ For arbitrary continuous function $f(x)$ on the segment $[-1, 1]$ we construct Valle-Poussin type averages $V_{n,m,N}(f,x)$ for discrete Fourier sums $S_{n,N}(f,x)$ on system of polynomials $\{\hat{p}_{k,N}(x)\}_{k=0}^{N-1}$ forming an orthonormals system on any finite non-uniform grids $T_N=\{x_j\}_{j=0}^{N-1}$ with weight $\Delta{t_j}=t_{j+1}-t_j.$ Approximation properties of the constructed averages $V_{n,m,N}(f,x)$ of order $n+m\leq{N-1}$ in the space of continuous functions $C[-1, 1]$ are investigated. Namely, it is proved that the Vallee-Poussin averages $V_{m,n,N}(f,x)$ for $\frac{n}m\asymp1, n\leq\lambda\delta_N^{-\frac14} (\lambda>0), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j},$ are uniformly bounded as a family of linear operators acting in the space $C[-1, 1].$ In addition, as a consequence of the obtained result the order of approximation of the continuous function $f(x)$ by the Vallee-Poussin $V_{n,m,N}(f,x)$ averages in space $C[-1, 1]$ is established.
Key words: polynomial, orthogonal system, grid, asymptotic formula, Fourier sums, Vallee-Poussin averages.
Received: 01.08.2024
Document Type: Article
UDC: 517.98
MSC: 33C45, 42С05
Language: Russian
Citation: A. A. Nurmagomedov, M. M. Shikhshinatova, “Approximation properties of Valle-Poussin averages for discrete Fourier sums bypolynomials orthogonal on arbitrary nets”, Vladikavkaz. Mat. Zh., 27:2 (2025), 93–111
Citation in format AMSBIB
\Bibitem{NurShi25}
\by A.~A.~Nurmagomedov, M.~M.~Shikhshinatova
\paper Approximation properties of Valle-Poussin averages for discrete Fourier sums bypolynomials orthogonal on arbitrary nets
\jour Vladikavkaz. Mat. Zh.
\yr 2025
\vol 27
\issue 2
\pages 93--111
\mathnet{http://mi.mathnet.ru/vmj958}
\crossref{https://doi.org/10.46698/q4030-9541-4914-r}
Linking options:
  • https://www.mathnet.ru/eng/vmj958
  • https://www.mathnet.ru/eng/vmj/v27/i2/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :28
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2026