Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 4, Pages 20–28
DOI: https://doi.org/10.46698/b8543-3760-0663-r
(Mi vmj881)
 

On $b$-weakly demicompact operators on Banach lattices

H. Benkhaled, A. Jeribi

Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Road Soukra km 3.5, B. P. 1171, Sfax 3000, Tunisia
References:
Abstract: Aqzzouz and Elbour proved that an operator $T$ on a Banach lattice $E$ is $b$-weakly compact if and only if $\|Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$ for each $b$-order bounded weakly null sequence $\{x_{n}\}$ in $E_{+}$. In this present paper, we introduce and study new concept of operators that we call $b$-weakly demicompact, use it to generalize known classes of operators which defined by $b$-weakly compact operators. An operator $T$ on a Banach lattice $E$ is said to be b-weakly demicompact if for every $b$-order bounded sequence $\{x_{n}\}$ in $E_{+}$ such that $x_{n}\rightarrow 0$ in $\sigma(E,E')$ and $\|x_{n}-Tx_{n}\|\rightarrow 0$ as $n\rightarrow \infty$, we have $\|x_{n}\|\rightarrow 0$ as $n\rightarrow \infty$. As consequence, we obtain a characterization of $KB$-spaces in terms of $b$-weakly demicompact operators. After that, we investigate the relationships between $b$-weakly demicompact operators and some other classes of operators on Banach lattices espaciallly their relationships with demi Dunford–Pettis operators and order weakly demicompact operators.
Key words: Banach lattice, $KB$-space, $b$-weakly demicompact operator, order weakly demicompact operator, demi Dunford–Pettis operator.
Document Type: Article
UDC: 517.98
MSC: 46B42, 47B60
Language: English
Citation: H. Benkhaled, A. Jeribi, “On $b$-weakly demicompact operators on Banach lattices”, Vladikavkaz. Mat. Zh., 25:4 (2023), 20–28
Citation in format AMSBIB
\Bibitem{BenJer23}
\by H.~Benkhaled, A.~Jeribi
\paper On $b$-weakly demicompact operators on Banach lattices
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 4
\pages 20--28
\mathnet{http://mi.mathnet.ru/vmj881}
\crossref{https://doi.org/10.46698/b8543-3760-0663-r}
Linking options:
  • https://www.mathnet.ru/eng/vmj881
  • https://www.mathnet.ru/eng/vmj/v25/i4/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :33
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024