Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2023, Volume 25, Number 3, Pages 59–75
DOI: https://doi.org/10.46698/z5526-4462-9472-g
(Mi vmj872)
 

Inversion of a convolution operator associated with spherical means

N. P. Volchkovaa, Vit. V. Volchkovb

a Donetsk National Technical University, 58 Artyoma St., Donetsk 283000, Russia
b Donetsk State University, 24 Universitetskaya St., Donetsk 283001, Russia
References:
Abstract: An obvious property of an arbitrary nonzero smooth antiperiodic function is that its derivative has no corresponding period. In other words, if $r$ is a fixed positive number, $f(x+r)+f(x-r)=0$ and $f'(x+r)-f'(x-r)=0$ on the real axis, then $f=0$. This fact admits non-trivial generalizations to multidimensional spaces. One general method for such generalizations is the following Brown-Schreiber-Taylor theorem on spectral analysis: any non-zero subspace $\mathcal{U}$ in $C(\mathbb{R}^n)$ invariant under all motions of $\mathbb{R}^n$ contains for some $\lambda\in \mathbb{C}$, the radial function $(\lambda|x|)^{1-\frac{n}{2}}J_{\frac{n}{2}-1}(\lambda|x|)$, where $J_{\nu}$ is the Bessel function of the first kind of order $\nu$. In particular, if a function $f\in C^1(\mathbb{R}^n)$ and its normal derivative have zero integrals over all spheres of fixed radius $r$ in $\mathbb{R}^n$, then $f=0$. In terms of convolution, this means that the operator $\mathcal{P}f =(f\ast \Delta \chi_r, f\ast \sigma_r)$, $f\in C(\mathbb{R}^n)$, is injective, where $\Delta$ is the Laplace operator, $\chi_{r}$ is the indicator of the ball $B_r=\{x\in\mathbb{R}^n: |x|<r\}$, $\sigma_{r}$ is the surface delta function centered on the sphere $S_r= \{x\in\mathbb{R}^n: |x|=r\}$. In this paper, we study the inversion problem for the operator $\mathcal{P}$ on the class of distributions. A new formula for reconstruction a distribution $f\in \mathcal{D}'(\mathbb{R}^n)$ from known convolutions $f\ast \Delta \chi_r$ and $f\ast \sigma_r$ is obtained. The paper uses the methods of harmonic analysis, as well as the theory of entire and special functions. The key step in the proof of the main result is the expansion of the Dirac delta function in terms of a system of radial distributions supported in $\overline{B}_r$, biorthogonal to some system of spherical functions. A similar approach can be used to invert other convolution operators with radial distributions in $\mathcal{E}'(\mathbb{R}^n)$.
Key words: radial distributions, mean periodicity, Pompeiu transform, inversion formulas.
Received: 07.08.2022
Document Type: Article
UDC: 517.5
MSC: 44A35, 42A85
Language: Russian
Citation: N. P. Volchkova, Vit. V. Volchkov, “Inversion of a convolution operator associated with spherical means”, Vladikavkaz. Mat. Zh., 25:3 (2023), 59–75
Citation in format AMSBIB
\Bibitem{VolVol23}
\by N.~P.~Volchkova, Vit.~V.~Volchkov
\paper Inversion of a convolution operator associated with spherical means
\jour Vladikavkaz. Mat. Zh.
\yr 2023
\vol 25
\issue 3
\pages 59--75
\mathnet{http://mi.mathnet.ru/vmj872}
\crossref{https://doi.org/10.46698/z5526-4462-9472-g}
Linking options:
  • https://www.mathnet.ru/eng/vmj872
  • https://www.mathnet.ru/eng/vmj/v25/i3/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :17
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024