Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 4, Pages 19–29
DOI: https://doi.org/10.46698/p3569-9057-4562-o
(Mi vmj833)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients

O. G. Avsyankinab, G. A. Kamenskikha

a Institute of Mathematics, Mechanics and Computer Science SFU, 8 a Milchakova St., Rostov-on-Don 344090, Russia
b Regional Mathematical Center SFU, 8 a Milchakova St., Rostov-on-Don 344090, Russia
Full-text PDF (256 kB) Citations (2)
References:
Abstract: We consider Volterra multidimensional integral operators with continuous coefficients in Lebesgue spaces. It is assumed that the kernel of the integral operator is homogeneous of degree $(-n)$, invariant under the rotation group $SO(n)$ and satisfies a certain summability condition that ensures the boundedness of the operator. In this paper, the main object of research is the Banach algebra $\mathfrak{A}$ generated by all operators of the above type and the identity operator. The algebra $\mathfrak{A}$ is noncommutative, and for its study we turn to the quotient algebra $\mathfrak{A}/\mathfrak{T}$, where $\mathfrak{T}$ is the set of all compact operators. It is shown that the algebra $\mathfrak{A}/\mathfrak{T}$ is commutative, which makes it possible to apply the general methods for studying commutative Banach algebras. In particular, a description of the maximal ideals space of the algebra $\mathfrak{A}/\mathfrak{T}$ is given and a criterion for the invertibility of elements from this algebra is found. Based on this, we construct a symbolic calculus for the Banach algebra $\mathfrak{A}$ that is, each operator from this algebra is assigned a certain continuous function. This function is called the symbol of the operator. In terms of the symbol, we obtained necessary and sufficient conditions for the Fredholm property of an operator from $\mathfrak{A}$, as well as an index formula.
Key words: integral operator, homogeneous kernel, symbol, Fredholmness, index, Banach algebra.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1386
Received: 02.11.2021
English version:
Sib. Math. J., 2023, Volume 64, Issue 4, Pages 955–962
DOI: https://doi.org/10.1134/S003744662304016X
Bibliographic databases:
Document Type: Article
UDC: 517.9
MSC: 47G10, 47L15
Language: Russian
Citation: O. G. Avsyankin, G. A. Kamenskikh, “On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients”, Vladikavkaz. Mat. Zh., 24:4 (2022), 19–29; Sib. Math. J., 64:4 (2023), 955–962
Citation in format AMSBIB
\Bibitem{AvsKam22}
\by O.~G.~Avsyankin, G.~A.~Kamenskikh
\paper On the algebra generated by Volterra integral operators with homogeneous kernels and continuous coefficients
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 4
\pages 19--29
\mathnet{http://mi.mathnet.ru/vmj833}
\crossref{https://doi.org/10.46698/p3569-9057-4562-o}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4527676}
\transl
\jour Sib. Math. J.
\yr 2023
\vol 64
\issue 4
\pages 955--962
\crossref{https://doi.org/10.1134/S003744662304016X}
Linking options:
  • https://www.mathnet.ru/eng/vmj833
  • https://www.mathnet.ru/eng/vmj/v24/i4/p19
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:91
    Full-text PDF :35
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024