Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 3, Pages 62–77
DOI: https://doi.org/10.46698/c3174-5520-8062-f
(Mi vmj825)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the theory of spaces of generalized Bessel potentials

A. L. Dzhabrailova, E. L. Shishkinabc

a Kadyrov Chechen State University, 32 Sheripova St., Grozny 364024, Russia
b Voronezh State University, 1 Universitetskaya Sq., Voronezh 394018, Russia
c Belgorod State National Research University (BelGU), 85 Pobedy St., Belgorod 308015, Russia
Full-text PDF (296 kB) Citations (1)
References:
Abstract: The purpose of the article is to introduce norms in the space of generalized Bessel potentials based on the weighted Dirichlet integrals. First, we define weighted Dirichlet integral and show that this integral can be represented using multidimensional generalised translation. Next, we demonstrate that this norm does not allow to define function spaces of arbitrary fractional order of smoothness. The potential theory originates from the theory of electrostatic and gravitational potentials and the Laplace, wave, Helmholtz, and Poisson equations. The famous Riesz potentials are known to be realizations of the real negative powers of the Laplace and wave operators. In the meantime, a lot of attention in the potential theory is given to the Bessel potential. Generalization in the article is achieved by considering the Laplace-Bessel operator which is constructed on the basis of the singular Bessel differential operator. The theory of singular differential equations containing the Bessel operator and the theory of the corresponding weighted function spaces belong to those mathematical areas, the theoretical and applied significance of which can hardly be overestimated.
Key words: Bessel operator, generalized Bessel potentials space, weighted Dirichlet integral.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FEGS-2020-0001
Received: 08.01.2022
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. L. Dzhabrailov, E. L. Shishkina, “On the theory of spaces of generalized Bessel potentials”, Vladikavkaz. Mat. Zh., 24:3 (2022), 62–77
Citation in format AMSBIB
\Bibitem{DzhShi22}
\by A.~L.~Dzhabrailov, E.~L.~Shishkina
\paper On the theory of spaces of generalized Bessel potentials
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 3
\pages 62--77
\mathnet{http://mi.mathnet.ru/vmj825}
\crossref{https://doi.org/10.46698/c3174-5520-8062-f}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4489391}
Linking options:
  • https://www.mathnet.ru/eng/vmj825
  • https://www.mathnet.ru/eng/vmj/v24/i3/p62
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :50
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024