Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 2, Pages 117–123
DOI: https://doi.org/10.46698/y5199-5569-8011-v
(Mi vmj818)
 

On $Q$-polynomial Shilla graphs with $b=6$

A. A. Makhneva, Zhigang Wanb

a N. N. Krasovskii Institute of Mathematics and Mechanics, 16 S. Kovalevskaja St., Ekaterinburg 620990, Russia
b School of Science, Hainan University, Haikou 570228, Hainan, P. R. China
References:
Abstract: Distance-regular graph $\Gamma$ of diameter $3$, having the second eigenvalue $\theta_1= a_3$ is called Shilla graph. For such graph $a=a_3$ devides $k$ and we set $b = b(\Gamma) = k/a$. Further $a_1 = a - b$ and $\Gamma$ has intersection array $\{ab,(a + 1)(b - 1), b_2; 1, c_2, a(b - 1)\}$. I. N. Belousov and A. A. Makhnev found feasible arrays of $Q$-polynomial Shilla graphs with $b=6$: $\{42t,5(7t+1),3(t+3);1,3(t+3),35t\}$, where $t\in \{7,12,17,27,57\}$, $\{312,265,48;1,24,260\}$, $\{372,315,75;1,15,310\}$, $\{624,525,80;1,40,520\}$, $\{744,625,125;1,25,620\}$, $\{930,780,150;1,30,775\}$, $\{1794,1500,200;1,100,1495\}$ or $\{5694, 4750,600;1,300,4745\}$. It is proved in the paper that graphs with intersection arrays $\{372,315,75;1,15,310\}$, $\{744,625,125;1,25,620\}$ and $\{1794,1500,200;1,100,1495\}$ do not exist.
Key words: distance-regular graph, Shilla graph, triple intersection numbers.
Received: 30.03.2021
Bibliographic databases:
Document Type: Article
UDC: 519.17
MSC: 20B05
Language: Russian
Citation: A. A. Makhnev, Zhigang Wan, “On $Q$-polynomial Shilla graphs with $b=6$”, Vladikavkaz. Mat. Zh., 24:2 (2022), 117–123
Citation in format AMSBIB
\Bibitem{MakWan22}
\by A.~A.~Makhnev, Zhigang~Wan
\paper On $Q$-polynomial Shilla graphs with $b=6$
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 2
\pages 117--123
\mathnet{http://mi.mathnet.ru/vmj818}
\crossref{https://doi.org/10.46698/y5199-5569-8011-v}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448048}
Linking options:
  • https://www.mathnet.ru/eng/vmj818
  • https://www.mathnet.ru/eng/vmj/v24/i2/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :28
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024