Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 2, Pages 101–116
DOI: https://doi.org/10.46698/g5860-8517-3109-i
(Mi vmj817)
 

Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets

Z. M. Magomedovaa, A. A. Nurmagomedovb

a Branch of the Russian State University of Tourism and Service, 401 A--G. Akushinsky Ave., Makhachkala 367000, Russia
b M. M. Dzhambulatov Dagestan State Agrarian University, 180 M. Gadzhiev St., Makhachkala 367032, Russia
References:
Abstract: Let $\Omega=\{x_0, x_1, \dots, x_j, \dots\}$ — discrete system of points such that $0=x_0<x_1<{x_2< \dots<x_j< \dots,}$ $\lim_{j\rightarrow\infty}x_j=+\infty$ and $\Delta{x_j}=x_{j+1}-x_j$, $\delta=\sup_{0\leq j<\infty}\Delta x_j<\infty,N=1/\delta.$ Asymptotic properties of polynomials $\hat{l}_{n,N}^\alpha(x)$ orthogonal with weight $\rho_1^\alpha(x_j)=e^{-x_j}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1})/(\alpha+1)$ in the case $-1<\alpha\leq 0$ and $\rho_2^\alpha(x_j)=e^{-x_{j+1}}(x_{j+1}^{\alpha+1}-x_j^{\alpha+1}/(\alpha+1)$ in the case $\alpha>0$ on arbitrary grids consisting of an infinite many points on the semi-axis $[0, +\infty)$ are investigated. Namely an asymptotic formula is proved in which asymptotic behavior of these polynomials as $n$ tends to infinity together with $N$ is closely related to asymptotic behavior of the orthonormal Laguerre polynomials $\hat{L}_n^\alpha(x).$
Key words: polynomial, orthogonal system, set, weight, asymptotic formula.
Received: 08.12.2020
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 33C45, 42С05
Language: Russian
Citation: Z. M. Magomedova, A. A. Nurmagomedov, “Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets”, Vladikavkaz. Mat. Zh., 24:2 (2022), 101–116
Citation in format AMSBIB
\Bibitem{MagNur22}
\by Z.~M.~Magomedova, A.~A.~Nurmagomedov
\paper Approximation properties of polynomials $\hat{l}_{n,n}^\alpha(x),$ orthogonal on any sets
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 2
\pages 101--116
\mathnet{http://mi.mathnet.ru/vmj817}
\crossref{https://doi.org/10.46698/g5860-8517-3109-i}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448047}
Linking options:
  • https://www.mathnet.ru/eng/vmj817
  • https://www.mathnet.ru/eng/vmj/v24/i2/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:69
    Full-text PDF :25
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024