Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 2, Pages 51–61
DOI: https://doi.org/10.46698/h7670-4977-9928-z
(Mi vmj813)
 

This article is cited in 2 scientific papers (total in 2 papers)

On finite homogeneous metric spaces

V. N. Berestovskiĭa, Yu. G. Nikonorovb

a Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug Ave., Novosibirsk 630090, Russia
b Southern Mathematical Institute VSC RAS, 53 Vatutina St., Vladikavkaz 362025, Russia
Full-text PDF (257 kB) Citations (2)
References:
Abstract: This survey is devoted to recently obtained results on finite homogeneous metric spaces. The main subject of discussion is the classification of regular and semiregular polytopes in Euclidean spaces by whether or not their vertex sets have the normal homogeneity property or the Clifford — Wolf homogeneity property. Every finite homogeneous metric subspace of an Euclidean space represents the vertex set of a compact convex polytope with the isometry group that is transitive on the set of vertices, moreover, all these vertices lie on some sphere. Consequently, the study of such subsets is closely related to the theory of convex polytopes in Euclidean spaces. The normal generalized homogeneity and the Clifford — Wolf homogeneity describe more stronger properties than the homogeneity. Therefore, it is natural to first check the presence of these properties for the vertex sets of regular and semiregular polytopes. In addition to the classification results, the paper contains a description of the main tools for the study of the relevant objects.
Key words: Archimedean solid, finite Clifford — Wolf homogeneous metric space, finite homogeneous metric space, finite normal homogeneous metric space, Gosset polytope, Platonic solid, regular polytope, semiregular polytope.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0006
The work of the first author was carried out within the framework of the state Contract to the IM SD RAS, project FWNF-2022-0006.
Received: 22.10.2021
Bibliographic databases:
Document Type: Article
UDC: 514.172.4, 515.124.4
Language: English
Citation: V. N. Berestovskiǐ, Yu. G. Nikonorov, “On finite homogeneous metric spaces”, Vladikavkaz. Mat. Zh., 24:2 (2022), 51–61
Citation in format AMSBIB
\Bibitem{BerNik22}
\by V.~N.~Berestovski{\v\i}, Yu.~G.~Nikonorov
\paper On finite homogeneous metric spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 2
\pages 51--61
\mathnet{http://mi.mathnet.ru/vmj813}
\crossref{https://doi.org/10.46698/h7670-4977-9928-z}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448043}
Linking options:
  • https://www.mathnet.ru/eng/vmj813
  • https://www.mathnet.ru/eng/vmj/v24/i2/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :34
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024