Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 2, Pages 14–24
DOI: https://doi.org/10.46698/a8931-0543-3696-o
(Mi vmj810)
 

A counter-example to the Andreotti–Grauert conjecture

Y. Alaoui

Department of Fundamental Sciences, Hassan II Institute of Agronomy and Veterinary Sciences, Madinat Al Irfane, BP 6202, Rabat, 10101, Morocco
References:
Abstract: In $1962$, Andreotti and Grauert showed that every $q$-complete complex space $X$ is cohomologically $q$-complete, that is for every coherent analytic sheaf ${\mathcal{F}}$ on $X$, the cohomology group $H^{p}(X, {\mathcal{F}})$ vanishes if $p\geq q$. Since then the question whether the reciprocal statements of these theorems are true have been subject to extensive studies, where more specific assumptions have been added. Until now it is not known if these two conditions are equivalent. Using test cohomology classes, it was shown however that if $X$ is a Stein manifold and, if $D\subset X$ is an open subset which has $C^{2}$ boundary such that $H^{p}(D, {\mathcal{O}}_{D})=0$ for all $p\geq q$, then $D$ is $q$-complete. The aim of the present article is to give a counterexample to the conjecture posed in $1962$ by Andreotti and Grauert [ref1] to show that a cohomologically $q$-complete space is not necessarily $q$-complete. More precisely, we show that there exist for each $n\geq 3$ open subsets $\Omega\subset\mathbb{C}^{n}$ such that for every ${\mathcal{F}}\in coh(\Omega)$, the cohomology groups $H^{p}(\Omega, {\mathcal{F}})$ vanish for all $p\geq n-1$ but $\Omega$ is not $(n-1)$-complete.
Key words: $q$-convex functions, $q$-convex with corners functions, $q$-complete spaces, cohomologically $q$-complete spaces, $q$-Runge spaces.
Received: 22.03.2020
Bibliographic databases:
Document Type: Article
UDC: 517.4
MSC: 32E10, 32E40
Language: English
Citation: Y. Alaoui, “A counter-example to the Andreotti–Grauert conjecture”, Vladikavkaz. Mat. Zh., 24:2 (2022), 14–24
Citation in format AMSBIB
\Bibitem{Ala22}
\by Y.~Alaoui
\paper A counter-example to the Andreotti--Grauert conjecture
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 2
\pages 14--24
\mathnet{http://mi.mathnet.ru/vmj810}
\crossref{https://doi.org/10.46698/a8931-0543-3696-o}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448040}
Linking options:
  • https://www.mathnet.ru/eng/vmj810
  • https://www.mathnet.ru/eng/vmj/v24/i2/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :24
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024