Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2022, Volume 24, Number 2, Pages 5–13
DOI: https://doi.org/10.46698/s8393-0239-0126-b
(Mi vmj809)
 

Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator

M. Ait Hammou

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar el Mahraz, Laboratory LAMA, Department of Mathematics, Fez, P. O. Box 1796, Morocco
References:
Abstract: The aim of this paper is to establish the existence of weak solutions, in $W_0^{1,p(x)}(\Omega)$, for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator. Our technical approach is based on the Berkovits topological degree theory for a class of demicontinuous operators of generalized $(S_+)$ type. We also use as a necessary tool the properties of variable Lebesgue and Sobolev spaces, and specially properties of $p(x)$-Laplacian operator. In order to use this theory, we will transform our problem into an abstract Hammerstein equation of the form $v+S\circ Tv=0$ in the reflexive Banach space $W^{-1,p'(x)}(\Omega)$ which is the dual space of $W_0^{1,p(x)}(\Omega)$. Note also that the problem can be seen as a nonlinear eigenvalue problem of the form$Au=\lambda u,$ where $Au:=-\mathrm{div}(|\nabla u|^{p(x)-2}\nabla u)-f(x,u)$. When this problem admits a non-zero weak solution $u$, $\lambda$ is an eigenvalue of it and $u$ is an associated eigenfunction.
Key words: Dirichlet problem, topological degree, $p(x)$-Laplacian operator.
Received: 26.03.2021
Bibliographic databases:
Document Type: Article
UDC: 517.954
MSC: 35J60, 47J05, 47H11
Language: English
Citation: M. Ait Hammou, “Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator”, Vladikavkaz. Mat. Zh., 24:2 (2022), 5–13
Citation in format AMSBIB
\Bibitem{Ait22}
\by M.~Ait Hammou
\paper Existence results for a Dirichlet boundary value problem involving the $p(x)$-Laplacian operator
\jour Vladikavkaz. Mat. Zh.
\yr 2022
\vol 24
\issue 2
\pages 5--13
\mathnet{http://mi.mathnet.ru/vmj809}
\crossref{https://doi.org/10.46698/s8393-0239-0126-b}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4448039}
Linking options:
  • https://www.mathnet.ru/eng/vmj809
  • https://www.mathnet.ru/eng/vmj/v24/i2/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :50
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024