Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 3, Pages 80–90
DOI: https://doi.org/10.46698/w5172-0182-0041-c
(Mi vmj775)
 

This article is cited in 1 scientific paper (total in 1 paper)

Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$

Yu. Kh. Eshkabilova, R. R. Kucharovb

a Karshi State University, 17 Kuchabag St., Karshi 180117, Uzbekistan
b National University of Uzbekistan, 4 University St., Tashkent 100174, Uzbekistan
Full-text PDF (240 kB) Citations (1)
References:
Abstract: The article studies some characteristic properties of self-adjoint partially integral operators of Fredholm type in the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $L_{0}\left(\Omega_{2}\right)$. Some mathematical tools from the theory of Kaplansky–Hilbert module are used. In the Kaplansky–Hilbert module $L_{0}\left[L_{2}\left(\Omega_{1}\right)\right]$ over $ L_{0} \left (\Omega _ {2} \right)$ we consider the partially integral operator of Fredholm type $T_{1}$ ($ \Omega_{1} $ and $\Omega_{2} $ are closed bounded sets in $ {\mathbb R}^{\nu_{1}}$ and $ {\mathbb R}^{\nu_{2}},$ $\nu_{1}, \nu_{2} \in {\mathbb N} $, respectively). The existence of $ L_{0} \left (\Omega _ {2} \right) $ nonzero eigenvalues for any self-adjoint partially integral operator $T_{1}$ is proved; moreover, it is shown that $T_{1}$ has finite and countable number of real $L_{0}(\Omega_{2})$-eigenvalues. In the latter case, the sequence $ L_{0}(\Omega_{2})$-eigenvalues is order convergent to the zero function. It is also established that the operator $T_{1}$ admits an expansion into a series of $\nabla_{1}$-one-dimensional operators.
Key words: partial integral operator, Kaplansky–Hilbert module, $L_0$-eigenvalue.
Received: 18.01.2021
Document Type: Article
UDC: 517.98
Language: English
Citation: Yu. Kh. Eshkabilov, R. R. Kucharov, “Partial integral operators of Fredholm type on Kaplansky–Hilbert module over $L_0$”, Vladikavkaz. Mat. Zh., 23:3 (2021), 80–90
Citation in format AMSBIB
\Bibitem{EshKuc21}
\by Yu.~Kh.~Eshkabilov, R.~R.~Kucharov
\paper Partial integral operators of Fredholm type on Kaplansky--Hilbert module over $L_0$
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 3
\pages 80--90
\mathnet{http://mi.mathnet.ru/vmj775}
\crossref{https://doi.org/10.46698/w5172-0182-0041-c}
Linking options:
  • https://www.mathnet.ru/eng/vmj775
  • https://www.mathnet.ru/eng/vmj/v23/i3/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:80
    Full-text PDF :34
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024