Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2021, Volume 23, Number 3, Pages 16–26
DOI: https://doi.org/10.46698/y9113-7002-9720-u
(Mi vmj770)
 

Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation

B. P. Allahverdieva, H. Tunab

a Department of Mathematics, Süleyman Demirel University, 32260 Isparta, Turkey
b Department of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey
References:
Abstract: In this work, we will consider the singular Hahn–Sturm–Liouville difference equation defined by $-q^{-1}D_{-\omega q^{-1},q^{-1}}D_{\omega ,q}y( x) +v(x) y( x) =\lambda y(x)$, $x\in (\omega _{0},\infty),$ where $\lambda$ is a complex parameter, $v$ is a real-valued continuous function at $\omega _{0}$ defined on $[\omega _{0},\infty)$. These type equations are obtained when the ordinary derivative in the classical Sturm–Liouville problem is replaced by the $\omega,q$-Hahn difference operator $D_{\omega,q}$. We develop the $\omega,q$-analogue of the classical Titchmarsh–Weyl theory for such equations. In other words, we study the existence of square-integrable solutions of the singular Hahn–Sturm–Liouville equation. Accordingly, first we define an appropriate Hilbert space in terms of Jackson–Nörlund integral and then we study families of regular Hahn–Sturm–Liouville problems on $[\omega_{0},q^{-n}]$, $n\in \mathbb{N}$. Then we define a family of circles that converge either to a point or a circle. Thus, we will define the limit-point, limit-circle cases in the Hahn calculus setting by using Titchmarsh's technique.
Key words: Hahn's Sturm–Liouville equation, limit-circle and limit-point cases, Titchmarsh–Weyl theory.
Document Type: Article
UDC: 517.927.4
Language: English
Citation: B. P. Allahverdiev, H. Tuna, “Titchmarsh–Weyl theory of the singular Hahn–Sturm–Liouville equation”, Vladikavkaz. Mat. Zh., 23:3 (2021), 16–26
Citation in format AMSBIB
\Bibitem{AllTun21}
\by B.~P.~Allahverdiev, H.~Tuna
\paper Titchmarsh--Weyl theory of the singular Hahn--Sturm--Liouville equation
\jour Vladikavkaz. Mat. Zh.
\yr 2021
\vol 23
\issue 3
\pages 16--26
\mathnet{http://mi.mathnet.ru/vmj770}
\crossref{https://doi.org/10.46698/y9113-7002-9720-u}
Linking options:
  • https://www.mathnet.ru/eng/vmj770
  • https://www.mathnet.ru/eng/vmj/v23/i3/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:53
    Full-text PDF :17
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024