Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2020, Volume 22, Number 2, Pages 18–23
DOI: https://doi.org/10.46698/y3646-7660-8439-j
(Mi vmj720)
 

On unbounded integral operators with quasisymmetric kernels

V. B. Korotkov

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., Novosibirsk 630090, Russia
References:
Abstract: In 1935 von Neumann established that a limit spectrum of self-adjoint Carleman integral operator in $L_2$ contains $0$. This result was generalized by the author on nonself-adjoint operators: the limit spectrum of the adjoint of Carleman integral operator contains $0$. Say that a densely defined in $L_2$ linear operator $A$ satisfies the generalized von Neumann condition if $0$ belongs to the limit spectrum of adjoint operator $A^{\ast}$. Denote by $B_0$ the class of all linear operators in $L_2$ satisfying a generalized von Neumann condition. The author proved that each bounded integral operator, defined on $L_2$, belongs to $B_0$. Thus, the question arises: is an analogous assertion true for all unbounded densely defined in $L_2$ integral operators? In this note, we give a negative answer on this question and we establish a sufficient condition guaranteeing that a densely defined in $L_2$ unbounded integral operator with quasisymmetric lie in $B_0$.
Key words: closable operator, integral operator, kerner of integral operator, limit spectrum, linear integral equation of the first or second kind.
Received: 22.10.2019
Document Type: Article
UDC: 517.983
MSC: 45P05, 47B34
Language: Russian
Citation: V. B. Korotkov, “On unbounded integral operators with quasisymmetric kernels”, Vladikavkaz. Mat. Zh., 22:2 (2020), 18–23
Citation in format AMSBIB
\Bibitem{Kor20}
\by V.~B.~Korotkov
\paper On unbounded integral operators with quasisymmetric kernels
\jour Vladikavkaz. Mat. Zh.
\yr 2020
\vol 22
\issue 2
\pages 18--23
\mathnet{http://mi.mathnet.ru/vmj720}
\crossref{https://doi.org/10.46698/y3646-7660-8439-j}
Linking options:
  • https://www.mathnet.ru/eng/vmj720
  • https://www.mathnet.ru/eng/vmj/v22/i2/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :46
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024