Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 4, Pages 5–19
DOI: https://doi.org/10.23671/VNC.2018.4.23383
(Mi vmj672)
 

This article is cited in 1 scientific paper (total in 1 paper)

Properties of extremal elements in the duality relation for Hardy spaces

Kh. Kh. Burchaeva, G. Yu. Ryabykhb

a Chechen State University, 32 A. Sheripov St., Grozny, 364024, Russia
b Don State Technical University, 1 Pl. Gagarina, Rostov-on-Don, 344010, Russia
Full-text PDF (347 kB) Citations (1)
References:
Abstract: Consider a Hardy space $H_p$ in the unit disk $D$, $p\geq1$. Let $l_\omega$ be a linear functional on $H_p$ determined by $\omega\in L_q$ $(T=\partial D,\ 1/p + 1/q=1)$ and let $F$ be an extremal function for $l_\omega$. Let $X\in H_q$ implements the best approximation of $\bar\omega$ in $L_q (T)$ by functions from $H_q^0 =\{y\in H_q: y(0)=0\}$. The functions $F$ and $X$ are called extremal elements (e. e.) for $l_\omega $. E. e. are related by the corresponding duality relation. We consider the problem of how certain properties of $ \omega $ will affect e. e. A similar problem is investigated in the case of $ 0<p<1 $. An article by L. Carleson and S. Jacobs (1972), investigated the problem of the properties of elements on which the infimum $\inf\{\|\bar\omega-x\|_{L_\infty (T)}:\ x \in H_\infty ^0\}$ for a given $\omega\in L_q (T)$ is attained. The hypothesis of the authors that the relationship between extremal elements is similar to that of the function $\omega$ and its projection onto $H_q$ is partially confirmed in a paper by V. G. Ryabykh (2006). Some properties of e. e. for $l_\omega $, when $\omega$ is a polynomial, were studied in a paper by Kh. Kh Burchaev, G. Yu. Ryabykh V. G. Ryabykh (2017). In this paper, relying on the main result of the last article and using the method of successive approximations, the following is proved: if $\omega \in L_ {q^*}(T)$ and $q \le q^*<\infty$, then $F\in H_{(p-1) q^*}$ and $X\in H_{q^*}$; if the derivative $\omega^{(n-1)}\in{\rm Lip}(\alpha,T)$ with $0<\alpha <1$, then $F = Bf$, where $B$ is the Blaschke product, $f$ is an external function, with $(|f(t)|^p)^{(n-1)} \in {\rm Lip}(\alpha, T)$. If the function $\omega$ is analytic outside the unit circle, then e. e is analytic in the same circle. The listed results clarify and complement similar results obtained in an above mentioned paper by V. G. Ryabykh. It is also proved that the extremal function for $l_\omega\in (H_q)^* $ exists and has the same smoothness as the generator function $\omega$, whenever $1/(n + 1)<\delta <1/n$, $\omega\in H_\infty \bigcap {\rm Lip}(\beta, T) $, $\beta=1/\delta-n +\nu <1$, and $\nu>0$.
Key words: linear functional, extremal element, approximation method, derivative.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00017_а
Received: 29.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.53/57
MSC: 47A60
Language: Russian
Citation: Kh. Kh. Burchaev, G. Yu. Ryabykh, “Properties of extremal elements in the duality relation for Hardy spaces”, Vladikavkaz. Mat. Zh., 20:4 (2018), 5–19
Citation in format AMSBIB
\Bibitem{BurRya18}
\by Kh.~Kh.~Burchaev, G.~Yu.~Ryabykh
\paper Properties of extremal elements in the duality relation for Hardy spaces
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 4
\pages 5--19
\mathnet{http://mi.mathnet.ru/vmj672}
\crossref{https://doi.org/10.23671/VNC.2018.4.23383}
\elib{https://elibrary.ru/item.asp?id=36816143}
Linking options:
  • https://www.mathnet.ru/eng/vmj672
  • https://www.mathnet.ru/eng/vmj/v20/i4/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :56
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024