Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 2, Pages 16–22
DOI: https://doi.org/10.23671/VNC.2018.2.14714
(Mi vmj648)
 

Maximal commutative involutive algebras on a Hilbert space

F. N. Arzikulov

Andizhan State University
References:
Abstract: This paper is devoted to involutive algebras of bounded linear operators on an infinite-dimensional Hilbert space. We study the problem of description of all subspaces of the vector space of all infinite-dimensional $n\times n$-matrices over the field of complex numbers for an infinite cardinal number $n$ that are involutive algebras. There are many different classes of operator algebras on a Hilbert space, including classes of associative algebras of unbounded operators on a Hilbert space. Most involutive algebras of unbounded operators, for example, $\sharp$-algebras, $EC^\sharp$-algebras and $EW^\sharp$-algebras, involutive algebras of measurable operators affiliated with a finite (or semifinite) von Neumann algebra, we can represent as algebras of infinite-dimensional matrices. If we can describe all maximal involutive algebras of infinite-dimensional matrices, then a number of problems of operator algebras, including involutive algebras of unbounded operators, can be reduced to problems of maximal involutive algebras of infinite-dimensional matrices. In this work we give a description of maximal commutative involutive subalgebras of the algebra of bounded linear operators in a Hilbert space as the algebras of infinite matrices.
Key words: involutive algebra, algebra of operators, Hilbert space, infinite matrix, von Neumann algebra.
Received: 09.02.2018
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: F. N. Arzikulov, “Maximal commutative involutive algebras on a Hilbert space”, Vladikavkaz. Mat. Zh., 20:2 (2018), 16–22
Citation in format AMSBIB
\Bibitem{Arz18}
\by F.~N.~Arzikulov
\paper Maximal commutative involutive algebras on a Hilbert space
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 2
\pages 16--22
\mathnet{http://mi.mathnet.ru/vmj648}
\crossref{https://doi.org/10.23671/VNC.2018.2.14714}
\elib{https://elibrary.ru/item.asp?id=35258712}
Linking options:
  • https://www.mathnet.ru/eng/vmj648
  • https://www.mathnet.ru/eng/vmj/v20/i2/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :58
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024