Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 1, Pages 30–37
DOI: https://doi.org/10.23671/VNC.2018.1.11394
(Mi vmj640)
 

The uniqueness of the symmetric structure in ideals of compact operators

B. R. Aminov, V. I. Chilin

National University of Uzbekistan, Vuzgorodok, Tashkent, 100174, Uzbekistan
References:
Abstract: Let $H$ be a separable infinite-dimensional complex Hilbert space, let $\mathcal L(H)$ be the $C^*$-algebra of bounded linear operators acting in $H$, and let $\mathcal K(H)$ be the two-sided ideal of compact linear operators in $\mathcal L(H)$. Let $(E, \|\cdot\|_E)$ be a symmetric sequence space, and let $\mathcal{C}_E:=\{ x \in \mathcal K(\mathcal H) : \{s_n(x)\}_{n=1}^\infty \in E\}$ be the proper two-sided ideal in $\mathcal L(H)$, where $\{s_n(x)\}_{n=1}^{\infty}$ are the singular values of a compact operator $x$. It is known that $\mathcal{C}_E$ is a Banach symmetric ideal with respect to the norm $ \|x\|_{\mathcal C_E}=\|\{s_n(x)\}_{n=1}^{\infty}\|_E$.
A symmetric ideal $\mathcal{C}_E$ is said to have a unique symmetric structure if $\mathcal{C}_E = \mathcal{C}_F$, that is $E =F$, modulo norm equivalence, whenever $(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E})$ is isomorphic to another symmetric ideal $(\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$. At the Kent international conference on Banach space theory and its applications (Kent, Ohio, August 1979), A. Pelczynsky posted the following problem: (P)
Does every symmetric ideal have a unique symmetric structure?
This problem has positive solution for Schatten ideals $\mathcal{C}_p, \ 1\leq p < \infty$ (J. Arazy and J. Lindenstrauss, 1975). For arbitrary symmetric ideals problem (P) has not yet been solved. We consider a version of problem (P) replacing an isomorphism $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ by a positive linear surjective isometry. We show that if $F$ is a strongly symmetric sequence space, then every positive linear surjective isometry $U:(\mathcal{C}_E, \|\cdot\|_{\mathcal{C}_E}) \to (\mathcal{C}_F, \|\cdot\|_{\mathcal{C}_F})$ is of the form $U(x) = u^*xu$, $x \in \mathcal C_E$, where $u \in \mathcal L(H)$ is a unitary or antiunitary operator. Using this description of positive linear surjective isometries, it is established that existence of such an isometry $U:\mathcal{C}_E \to \mathcal{C}_F$ implies that $(E, \|\cdot\|_E)=(F, \|\cdot\|_F)$.
Key words: symmetric ideal of compact operators, uniqueness of a symmetric structure, positive isometry.
Received: 29.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.98
MSC: 46L52, 46B04
Language: English
Citation: B. R. Aminov, V. I. Chilin, “The uniqueness of the symmetric structure in ideals of compact operators”, Vladikavkaz. Mat. Zh., 20:1 (2018), 30–37
Citation in format AMSBIB
\Bibitem{AmiChi18}
\by B.~R.~Aminov, V.~I.~Chilin
\paper The uniqueness of the symmetric structure in ideals of compact operators
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 1
\pages 30--37
\mathnet{http://mi.mathnet.ru/vmj640}
\crossref{https://doi.org/10.23671/VNC.2018.1.11394}
\elib{https://elibrary.ru/item.asp?id=32778493}
Linking options:
  • https://www.mathnet.ru/eng/vmj640
  • https://www.mathnet.ru/eng/vmj/v20/i1/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :75
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024