Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2018, Volume 20, Number 1, Pages 21–29
DOI: https://doi.org/10.23671/VNC.2018.1.11393
(Mi vmj639)
 

Derivations with values in an ideal $F$-spaces of measurable functions

A. A. Alimova, V. I. Chilinb

a Tashkent Islamic University, 11 Abdulla Kodiriy Ave., Tashkent, 100011, Uzbekistan
b National University of Uzbekistan, Vuzgorodok, Tashkent, 100011, Uzbekistan
References:
Abstract: It is known that any derivation on a commutative von Neumann algebra $ \mathcal {L}_{\infty} (\Omega, \mu)$ is identically equal to zero. At the same time, the commutative algebra $\mathcal {L}_{0}(\Omega, \mu)$ of complex measurable functions defined on a non-atomic measure space $(\Omega,\mu)$ admits non-zero derivations. Besides, every derivation on $\mathcal{L}_{\infty}(\Omega, \mu)$ with the values in an ideal normed subspace $X \subset \mathcal{L}_{0}(\Omega,\mu)$ is equal to zero. The same remains true for an ideal quasi-normed subspace $X \subset\mathcal{L}_{0}(\Omega, \mu)$.
Naturally, there is the problem of describing the class of ideal $F$-normed spaces $X \subset \mathcal{L}_{0}(\Omega, \mu)$ for which there is a non-zero derivation on $\mathcal{L}_{\infty}(\Omega, \mu)$ with the values in $X $. We give necessary and sufficient conditions for a complete ideal $F$-normed spaces $X$ to be such that there is a non-zero derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu) \to X$. In particular, it is shown that if the $F$-norm on $X$ is order semicontinuous, each derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu) \to X$ is equal to zero. At the same time, existence of a non-atomic idempotent $0\neq e \in X$, $\mu(e) < \infty$ for which the measure topology in $e \cdot X$ coincides with the topology generated by the $F$-norm implies the existence of a non-zero derivation $\delta: \mathcal{L}_{\infty}(\Omega, \mu)\to X$. Examples of such ideal $F$-normed spaces are algebras $\mathcal{L}_{0}(\Omega, \mu)$ with non-atomic measure spaces $(\Omega, \mu)$ equipped with the $F$-norm $\| f\|_{\Omega} = \int_{\Omega} \frac {| f |} {1+ | f |} d\mu $. For such ideal $ F$-spaces there is at least a continuum of pairwise distinct non-zero derivations $\delta: \mathcal{L}_{\infty}(\Omega, \mu)\to (\mathcal{L}_{0}(\Omega, \mu), \|\cdot\|_{\Omega})$.
Key words: derivation, an ideal space, $F$-norm.
Received: 07.12.2017
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. A. Alimov, V. I. Chilin, “Derivations with values in an ideal $F$-spaces of measurable functions”, Vladikavkaz. Mat. Zh., 20:1 (2018), 21–29
Citation in format AMSBIB
\Bibitem{AliChi18}
\by A.~A.~Alimov, V.~I.~Chilin
\paper Derivations with values in an ideal $F$-spaces of measurable functions
\jour Vladikavkaz. Mat. Zh.
\yr 2018
\vol 20
\issue 1
\pages 21--29
\mathnet{http://mi.mathnet.ru/vmj639}
\crossref{https://doi.org/10.23671/VNC.2018.1.11393}
\elib{https://elibrary.ru/item.asp?id=32778492}
Linking options:
  • https://www.mathnet.ru/eng/vmj639
  • https://www.mathnet.ru/eng/vmj/v20/i1/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :57
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024