|
Vladikavkazskii Matematicheskii Zhurnal, 2017, Volume 19, Number 1, Pages 11–17
(Mi vmj602)
|
|
|
|
Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$
V. V. Bitkina North Ossetian State University after Kosta Levanovich Khetagurov, Vladikavkaz
Abstract:
Let the $3$-$(V, K, \Lambda)$ scheme $E=(X,B)$ be an extension of the symmetric 2-scheme. Then either $E$ is Hadamard $3$-$(4\Lambda + 4, 2\Lambda + 2,\Lambda)$ scheme, or $V = (\Lambda + 1)(\Lambda^2 + 5\Lambda + 5)$ and $K = (\Lambda + 1)(\Lambda + 2)$, or $V = 496$, $K = 40$ and $\Lambda = 3$. The complementary graph of a block graph of $3$-$(496,40,3)$ scheme is strongly regular with parameters $(6138,1197,156,252).$ Let's call this complementary graph Cameron's monster. In this paper automorphisms of monster are studied.
Key words:
strongly regular graph, vertex symmetric graph, automorphism group of a graph.
Received: 15.08.2016
Citation:
V. V. Bitkina, “Automorphisms of the Cameron's monster with parameters $(6138, 1197, 156, 252)$”, Vladikavkaz. Mat. Zh., 19:1 (2017), 11–17
Linking options:
https://www.mathnet.ru/eng/vmj602 https://www.mathnet.ru/eng/vmj/v19/i1/p11
|
Statistics & downloads: |
Abstract page: | 4744 | Full-text PDF : | 59 | References: | 38 |
|