Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2016, Volume 18, Number 2, Pages 3–11 (Mi vmj575)  

Paired integral operators with homogeneous-difference kernels

O. G. Avsyankin

Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Rostov-on-Don, Russia
References:
Abstract: We consider the paired multidimensional integral operators with homogeneous-difference kernels, acting in $L_p$-spaces. For these operators the symbol is defined. In term of the symbol the necessary and sufficient conditions for the invertibility of operators are obtained.
Key words: integral operator, homogeneous-difference kernel, symbol, invertibility, spherical harmonics.
Received: 19.11.2015
Document Type: Article
UDC: 517.9
Language: Russian
Citation: O. G. Avsyankin, “Paired integral operators with homogeneous-difference kernels”, Vladikavkaz. Mat. Zh., 18:2 (2016), 3–11
Citation in format AMSBIB
\Bibitem{Avs16}
\by O.~G.~Avsyankin
\paper Paired integral operators with homogeneous-difference kernels
\jour Vladikavkaz. Mat. Zh.
\yr 2016
\vol 18
\issue 2
\pages 3--11
\mathnet{http://mi.mathnet.ru/vmj575}
Linking options:
  • https://www.mathnet.ru/eng/vmj575
  • https://www.mathnet.ru/eng/vmj/v18/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :87
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024