Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2014, Volume 16, Number 4, Pages 49–53 (Mi vmj521)  

This article is cited in 3 scientific papers (total in 3 papers)

Homogeneous polynomials, root mean power, and geometric means in vector lattices

Z. A. Kusraeva

South Mathematical Institute of VSC RAS, Vladikavkaz, Russia
Full-text PDF (201 kB) Citations (3)
References:
Abstract: It is proved that for a homogeneous orthogonally additive polynomial $P$ of degree $s\in\mathbb N$ from a uniformly complete vector lattice $E$ to some convex bornological space the equations $P(\mathfrak S_s(x_1,\ldots,x_N))= P(x_1)+\ldots+P(x_N)$ and $P(\mathfrak G(x_1,\ldots,x_s))=\check P(x_1,\ldots,x_s)$ hold for all positive $x_1,\ldots,x_s\in E$, where $\check P$ is an $s$-linear operator generating $P$, while $\mathfrak S_s(x_1,\ldots,x_N)$ and $\mathfrak G(x_1,\ldots,x_s)$ stand respectively for root mean power and geometric mean in the sense of homogeneous functional calculus.
Key words: vector lattice, homogeneous polynomial, linearization of a polynomial, root mean power, geometric mean.
Received: 06.03.2014
Document Type: Article
UDC: 517.98
Language: Russian
Citation: Z. A. Kusraeva, “Homogeneous polynomials, root mean power, and geometric means in vector lattices”, Vladikavkaz. Mat. Zh., 16:4 (2014), 49–53
Citation in format AMSBIB
\Bibitem{Kus14}
\by Z.~A.~Kusraeva
\paper Homogeneous polynomials, root mean power, and geometric means in vector lattices
\jour Vladikavkaz. Mat. Zh.
\yr 2014
\vol 16
\issue 4
\pages 49--53
\mathnet{http://mi.mathnet.ru/vmj521}
Linking options:
  • https://www.mathnet.ru/eng/vmj521
  • https://www.mathnet.ru/eng/vmj/v16/i4/p49
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:210
    Full-text PDF :86
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024