Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2009, Volume 11, Number 2, Pages 31–42 (Mi vmj27)  

This article is cited in 6 scientific papers (total in 7 papers)

Functional calculus and Minkowski duality on vector lattices

A. G. Kusraev

South Mathematical Institute, Vladikavkaz Science Center of the RAS, Russia
Full-text PDF (198 kB) Citations (7)
References:
Abstract: The paper extends homogeneous functional calculus on vector lattices. It is shown that the function of elements of a relatively uniformly complete vector lattice can naturally be defined if the positively homogeneous function is defined on some conic set and is continuous on some closed convex subcone. An interplay between Minkowski duality and homogeneous functional calculus leads to the envelope representation of abstract convex elements generated by the linear hull of a finite collection in a uniformly complete vector lattice.
Key words: vector lattices, functional calculus, Minkowski duality, sublinear and superlinear operators, envelope representation.
Received: 12.04.2009
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Citation: A. G. Kusraev, “Functional calculus and Minkowski duality on vector lattices”, Vladikavkaz. Mat. Zh., 11:2 (2009), 31–42
Citation in format AMSBIB
\Bibitem{Kus09}
\by A.~G.~Kusraev
\paper Functional calculus and Minkowski duality on vector lattices
\jour Vladikavkaz. Mat. Zh.
\yr 2009
\vol 11
\issue 2
\pages 31--42
\mathnet{http://mi.mathnet.ru/vmj27}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529407}
Linking options:
  • https://www.mathnet.ru/eng/vmj27
  • https://www.mathnet.ru/eng/vmj/v11/i2/p31
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :341
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024