Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 1, Pages 76–83
DOI: https://doi.org/10.15826/umj.2024.1.007
(Mi umj222)
 

Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$

Alexander A. Makhnevab, Mikhail P. Golubyatnikovac, Konstantin S. Efimovdc

a Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Hainan University
c Ural Federal University, Ekaterinburg
d Ural State Mining University
References:
Abstract: We consider antipodal graphs $\Gamma$ of diameter 4 for which $\Gamma_{1,2}$ is a strongly regular graph. A.A. Makhnev and D.V. Paduchikh noticed that, in this case, $\Delta=\Gamma_{3,4}$ is a strongly regular graph without triangles. It is known that in the cases $\mu=\mu(\Delta)\in \{2,4,6\}$ there are infinite series of admissible parameters of strongly regular graphs with $k(\Delta)=\mu(r+1)+r^2$, where $r$ and $s=-(\mu+r)$ are nonprincipal eigenvalues of $\Delta$. This paper studies graphs with $\mu(\Delta)=4$ and 6. In these cases, $\Gamma$ has intersection arrays $\{{r^2+4r+3},{r^2+4r},4,1;1,4,r^2+4r,r^2+4r+3\}$ and $\{r^2+6r+5,r^2+6r,6,1;1,6,r^2+6r,r^2+6r+5\}$, respectively. It is proved that graphs with such intersection arrays do not exist.
Keywords: Distance-regular graph, Strongly regular graph, Triple intersection numbers
Funding agency Grant number
National Natural Science Foundation of China 12171126
Laboratory of Endgeeniring Modelling and Statistics Calculations of Hainan Province
The study was supported by National Natural Science Foundation of China (12171126) and grant Laboratory of Endgeeniring Modelling and Statistics Calculations of Hainan Province.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander A. Makhnev, Mikhail P. Golubyatnikov, Konstantin S. Efimov, “Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$”, Ural Math. J., 10:1 (2024), 76–83
Citation in format AMSBIB
\Bibitem{MakGolEfi24}
\by Alexander~A.~Makhnev, Mikhail~P.~Golubyatnikov, Konstantin~S.~Efimov
\paper Graphs $\Gamma$ of diameter 4 for which $\Gamma_{3,4}$ is a strongly regular graph with $\mu=4,6$
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 1
\pages 76--83
\mathnet{http://mi.mathnet.ru/umj222}
\crossref{https://doi.org/10.15826/umj.2024.1.007}
\elib{https://elibrary.ru/item.asp?id=68586406}
\edn{https://elibrary.ru/UJHEME}
Linking options:
  • https://www.mathnet.ru/eng/umj222
  • https://www.mathnet.ru/eng/umj/v10/i1/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024