Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 109–120
DOI: https://doi.org/10.15826/umj.2023.2.009
(Mi umj208)
 

This article is cited in 1 scientific paper (total in 1 paper)

A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials

Yahia Habbachi

Université de Gabès
Full-text PDF (160 kB) Citations (1)
References:
Abstract: In this paper, we consider the following $\mathcal{L}$-difference equation
$$\Phi(x) \mathcal{L}P_{n+1}(x)=(\xi_nx+\vartheta_n)P_{n+1}(x)+\lambda_nP_{n}(x),\quad n\geq0,$$
where $\Phi$ is a monic polynomial (even), $\deg\Phi\leq2$, $\xi_n,\,\vartheta_n,\,\lambda_n,\,n\geq0$, are complex numbers and $\mathcal{L}$ is either the Dunkl operator $T_\mu$ or the the $q$-Dunkl operator $T_{(\theta,q)}$. We show that if $\mathcal{L}=T_\mu$, then the only symmetric orthogonal polynomials satisfying the previous equation are, up a dilation, the generalized Hermite polynomials and the generalized Gegenbauer polynomials and if $\mathcal{L}=T_{(\theta,q)}$, then the $q^2$-analogue of generalized Hermite and the $q^2$-analogue of generalized Gegenbauer polynomials are, up a dilation, the only orthogonal polynomials sequences satisfying the $\mathcal{L}$-difference equation.
Keywords: Orthogonal polynomials, Dunkl operator, $q$-Dunkl operator.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Yahia Habbachi, “A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials”, Ural Math. J., 9:2 (2023), 109–120
Citation in format AMSBIB
\Bibitem{Hab23}
\by Yahia~Habbachi
\paper A new characterization of symmetric dunkl and $q$-dunkl-classical orthogonal polynomials
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 109--120
\mathnet{http://mi.mathnet.ru/umj208}
\crossref{https://doi.org/10.15826/umj.2023.2.009}
\elib{https://elibrary.ru/item.asp?id=59690657}
\edn{https://elibrary.ru/PCOTGH}
Linking options:
  • https://www.mathnet.ru/eng/umj208
  • https://www.mathnet.ru/eng/umj/v9/i2/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :44
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024